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Executive Summary 
This document summarizes the findings of the AVSI AFE 87 – Machine Learning project. The project 
was performed by AVSI members from Airbus, Boeing, Collins Aerospace, Embraer, FAA, GE Aviation, 
Honeywell, NASA, Saab, Thales, and AVSI. The project brought together subject matter experts with 
knowledge of aircraft systems certification and others with specific expertise in artificial intelligence (AI) 
and machine learning (ML) technologies. The objective was to investigate the safety and certification 
aspects of emerging machine learning technologies that are being incorporated in certifiable safety-
critical aerospace systems. This report represents the primary output of the project, which provides 
AVSI members with useful information to begin introducing these technologies into future safety-critical 
platforms. Additionally, the recommendations in this report are intended to stimulate development of 
consensus standards, guidance, and assurance technologies by the broader set of aerospace industry 
stakeholders in order to rapidly adapt existing certification processes to accommodate these emerging 
technologies while maintaining the required level of safety. 
The project was structured to address these issues through three major tasks: (1) a literature search, 
(2) consideration of a process flow specifically for machine learning systems, and (3) an investigation 
of suitable runtime assurance architectures. These tasks were specifically focused on highlighting 
certification/assurance issues and intentionally avoided detailed consideration of specific machine 
learning implementations. Furthermore, the subject matter expertise was largely focused on 
commercial transport applications, however the concepts are extensible to other applications as much 
as existing certification processes can be extended to these applications. 
The initial task was a search of existing literature to understand the state of the art concerning safety 
assurance of machine learning technologies. The project found that while there is an extensive body of 
AI/ML literature, little research has been performed in the area of safety assurance.  The investigation 
focused on artificial neural nets, as this provided the largest body of references, and this guided the 
focus of the other project tasks. This report includes extensive references and a full bibliography is 
available from AVSI upon request. 
The second task was an investigation of the impact of ML technologies on existing certification 
processes and changes necessary to accommodate the fundamentally different nature of data-based 
systems. The project developed a reference ML development process flow (Section 4) that highlights 
the need to (1) properly manage data used to develop ML-based systems and (2) to incrementally 
validate and verify the system at each stage of the development life cycle. Importantly, the project 
concluded that initial application of ML in commercial aviation will be limited to systems that are trained 
during development and do not dynamically learn after being introduced into service. 
The third task examined the applicability of runtime assurance architectures to bound the behavior of 
ML-based systems in a safety-critical system. The project recognized that such architectures may be 
useful to enable the introduction of these beneficial technologies into certified aircraft. The project 
concluded that simplex monitoring architectures could maintain adequate levels of safety provided that 
detection and interception of out-of-bounds behavior was possible within acceptable latency 
requirements. 
Section 7 summarizes the recommendations from each of these tasks as developed in the body of this 
report. Specifically, Section 7.3 provides recommendations for follow-on research necessary to 
elaborate on the findings in this report.
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1 Introduction 
Safety-critical systems are developed by using rigorous system, software and airborne electronic 
hardware development assurance processes, following guidelines and standards such as SAE 
ARP4754A,1 RTCA DO-178C,2 and RTCA DO-254.3 These assurance processes require explicitly 
specified behavior and traceability down to actual design (e.g. source code).  
The aerospace industry is beginning to investigate how to apply artificial intelligence (AI) and extend 
development methods to implement new complex functions. The application of AI technologies such 
as machine learning (ML) requires new approaches to assuring overall system safety, due in part to 
the lack of explicitly specified functional behavior. 
For example, the US Air Force Chief Scientist Report on "Technology Horizons: A Vision for Air Force 
Science & Technology During 2010-2030” summarizes the certification challenge with using artificial 
neural networks (ANNs), one type of ML algorithm, for highly adaptive autonomous systems: 

“Developing certifiable verification and validation methods for highly adaptive 
autonomous systems is one of the major challenges facing the entire field of control 
science, and one that may require the larger part of a decade or more to develop a 
fundamental understanding of the underlying theoretical principles and various ways that 
these could be applied.” 4 

United States Code of Federal Regulations (CFR) Parts 23, 25, 27, and 29, all have an airworthiness 
standard that states, “the equipment, systems, and installations must be designed and installed 
to ensure they perform their intended functions under all foreseeable operating conditions.” If 
machine learning is used, for example, to increase the level of flight control autonomy, these current 
standards imply the applicant must demonstrate the autonomous flight control function performs its 
intended function under all foreseeable operating conditions. The operating conditions can be infinite 
and may need to include rain, inflight icing, snow, dust, viewing angles, sensor imperfections, lighting 
changes, system failures, sensor degradation etc., all of which must be accounted for in order to show 
evidence of safe operation of a system including ML applications. 
The scope and tasks of this AFE are intended to address the following fundamental certification 
questions: 

1. What performance-based objectives do applicants need to satisfy to demonstrate a system 
featuring machine learning applications meets its intended function in all foreseeable operating 
conditions, recognizing that the foreseeable operating conditions may need to be bounded? 

2. What are the methods for determining a training dataset is a) correct, and b) complete? 
3. When is machine learning "retraining" needed and how is the extent of the retraining 

determined? How much retraining is required, for example, if changes are made to the sensors, 
neural net structure, or neural net activation functions, etc.?  

 
1  SAE International, “Guidelines for Development of Civil Aircraft and Systems,” ARP4754A, Dec 2010. 
2  RTCA, "Software Considerations in Airborne Systems and Equipment Certification”, Washington DC, 

DO-178C, Dec 2011. 
3  RTCA, "Design Assurance Guidance for Airborne Electronic Hardware”, Washington DC, DO-254, 

Apr 2000. 
4  Dahm, W. J. A (Chief Scientist of the Air, Force Working Group Chair); AF/ST-TR-10-01-PR, Vol. 1, 

“Technology Horizons: A Vision for Air Force Science & Technology,” 15 May 2010. 
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4. Can the simplex architecture monitors work for all machine learning applications, including 
complex functions such as ML classifiers? What are the conditions when a simplex architecture 
cannot work? 

1.1 AFE 87 Project Description and Scope 
The AFE 87 Machine Learning project focused on the safety and certification aspects of using machine 
learning techniques for certified air vehicle platforms. This project was divided into three major tasks: 
Task 1 started with a literature search of Machine Learning methodologies to identify those most 
applicable to safety-critical aviation systems. The search intended to identify certification gaps in those 
approaches and included investigation of how adjacent industries, such as automotive, are approaching 
machine learning implementation and certification. The Task 1 deliverables are contained in this report, 
primarily in Section 2, which summarizes the current state of machine learning methodologies, adjacent 
industry approaches, and the certification gaps when applying these methodologies to aviation safety 
applications. A summary of the literature search results is given in Section 3.4. 
Task 2 focused on the certification aspects of implementing a machine learning process flow by three 
use cases: using machine learning as a development tool only, machine learning used in a runtime 
monitoring environment, and dynamic machine learning that modifies runtime behavior in response to 
continued learning. During the research, the team decided to focus on ML design aid and dedicate its 
efforts on establishing the acceptability criteria on major characteristics such as: giving some 
requirements in terms of the dataset, robustness, adversarial inputs, observability and interpretability 
for aerospace applications. For this task, the primary question narrowed the focus and asked: What is 
a reasonable process flow for machine learning in applying this technique to certification of aircraft 
systems and what use cases are appropriate to use in assessing their value? The results from Task 2 
are found in Section 3, Safety Considerations When Using Machine Learning and Section 4, Machine 
Learning Process Flow for Safety-Critical Applications.  
Task 3 examined methods for bounding the runtime behavior of a complex system that employs 
machine learning computational techniques. This task investigated the viability of the different methods 
for implementing a “safety net” around the non-explicitly specified part of the system.  
The results from this task addressed the questions: 

• Are there one or more bounding approaches that can be used for complex systems by limiting 
their behavior through reversion to simpler systems?  

• Are there schemes where it makes sense to set up such “safety nets” for certification purposes?  
The Task 3 deliverables are contained in this report in Section 6, Considerations for Bounding the 
Behavior of ML Algorithms, including a discussion on the viability of the bounding methodologies and 
a set of certification guidelines for a bounding safety net. 

1.2 Document Overview 
In Section 2 we introduce Machine Learning by its definition, classifications, applicability, the current 
methodologies and the adjacent industry approaches. Section 3 highlights the challenges faced by 
practitioners attempting to use Machine Learning in safety-critical domains. Section 4 introduces a 
recommended process that should be followed for using Machine Learning in a safety-critical 
application. Section 5 provides guidance for preparing goals, arguments and evidence to support a 
safety analysis. Section 6 describes approaches to bound behavior including runtime assurance. 
Section 7 provides guidance for practitioners, standards authorities and for future research. Section 8 
is a glossary of terms used in the paper, while Section 9 is a table of references used in this report. 
Finally, Appendix A provides an extended treatment on observability in machine Learning applications. 
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2 Machine Learning Current State 
Machine learning models have shown impressive results in a wide range of problem domains including 
image classification,5 object identification and tracking,6 motion planning, anomaly detection and control 
(such as those present in self-driving cars),7,8 and natural language processing.9 However, these 
techniques are often black box in nature; particularly the recent developments in deep learning (DL) 
models. 

 
Figure 1: Artificial intelligence, machine learning and deep learning. 

Figure 1 illustrates how machine learning and deep learning are nested subgroups of AI. The 
differences between ML and DL are often unclear to non-practitioners. Deep learning has superior 
performance to ML on a wide variety of tasks including speech recognition, natural language, vision, 
motion planning, and gaming. Though generalized, the primary points of comparison are listed in Table 
1. 

 
5  Xie, et al. “Aggregated Residual Transformations for Deep Neural Networks.” ArXiv.org, 11 Apr. 2017, 

https://arxiv.org/abs/1611.05431. 
6  Ren, et al. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” 

ArXiv.org, 6 Jan. 2016, https://arxiv.org/abs/1506.01497. 
7  Bojarski, Mariusz; Testa, Davide Del; Dworakowski, Daniel; Firner, Bernhard; Flepp, Beat; Goyal, Prasoon 

et al. (2016): “End to End Learning for Self-Driving Cars.” Available online at 
https://arxiv.org/pdf/1604.07316v1. 

8  Qureshi, et al. “Motion Planning Networks.” ArXiv.org, 24 Feb. 2019, https://arxiv.org/abs/1806.05767. 
9  Vaswani, et al. “Attention Is All You Need.” ArXiv.org, 6 Dec. 2017, https://arxiv.org/abs/1706.03762. 
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Table 1: Modeling aspects of machine and deep learning. 

Modeling Aspects ML DL 
Scaling Model training typically plateaus more 

quickly. 
Often continue to improve with more data. 

Feature Engineering Domain experts determine which information 
in the data (features) receive focus.  

Minimal to no feature engineering. DL 
algorithms learn which information to 
emphasize through optimization without 
expert input.  

Ease of transfer Models are usually narrow in scope and less 
adaptable across domains. 

Models often adapt seamlessly to multiple 
applications. E.g., publicly available pre-
trained object recognition models form the 
basis of many computer vision applications. 

Interpretability (XAI) More interpretable due to explicit feature 
design and simpler models. 

Explainability is primarily attained through 
heuristic probing of the model behavior after 
training.  

Computation Are relatively inexpensive and fast to train. 
Special hardware is less of a constraint. 

Requires specialized hardware and large 
SSD and RAM memory. Often time intensive 
to train, but resource use decreases once 
training is completed. 

 
Challenges in interpreting the underlying behaviors of trained ML models and the traceability to 
requirements (particularly from the perspective of current traceability practices) makes certification of 
safety-critical systems with embedded data-based AI unattainable using existing certification tools and 
processes. Interpretability, sometimes referred to as “explainable AI” (XAI), of DL systems is usually 
attained through heuristic probing methods after the model has been trained. Despite rapid progress 
on such methods to increase user trust of DL models, this remains an open challenge. 

2.1 Machine Learning Overview and Perspective 
Machine learning can be broadly classified according to type: Unsupervised, Supervised and 
Reinforcement Learning, as illustrated in Figure 2. Each of these techniques can be further combined, 
and often are, within a system. These learning types can be distinguished by factors such as the 
underlying learning mechanism, objective/cost function to be optimized and/or the supporting 
infrastructure.  This section provides a high-level explanation of these different techniques. 
2.1.1 Unsupervised Learning 
Unsupervised learning (UL) is a common technique when a label (or target value) is not provided within 
the training dataset. This category of ML relies on clustering of data based on similarities in latent 
features of the datasets. For example, UL techniques could be used for anomaly detection on an aircraft 
by analyzing and clustering feeds from sensors distributed throughout the system, based on different 
modes of operation. Over time, an unsupervised model could learn to highlight differences between 
nominal and off-nominal sensor data. Such a detection model might be used to forecast and predict 
likely errors within the aircraft. 
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Figure 2: Three primary branches of machine learning: Unsupervised, Supervised and Reinforcement 

Learning. 

2.1.2 Supervised Learning 
Supervised learning (SL) is utilized when the underlying dataset has a target or label associated with 
each element of the set. Continuing with the predictive maintenance example, a SL system could learn 
when to predict system failures based on a dataset of prior flight logs, where each time-stamped 
example might be the time series of sensor readings or data from the health management system. The 
label could be a simple failure/no-failure or the exact type of failure detected. With training, a SL model 
will learn patterns in the input data (sensor feeds) indicative of a current or future failure. The model 
could then be deployed on a live system to help assist in predictive maintenance. Supervised learning 
models optimize their outputs by updating internal model parameters to minimize the difference 
between their predicted values and the expected value specified in the dataset. 
2.1.3 Reinforcement Learning 
Reinforcement learning (RL) is yet another ML paradigm that optimizes a model via a reward heuristic 
that indicates the quality of an action taken at each iterative step. In RL, an “agent” (i.e. the underlying 
model - also known as a policy) receives state information from the environment with which it interacts. 
This environment could be real or simulated. It is common to use a simulated environment for 
preliminary training and testing of an RL agent before deploying (and possibly refining) the model in a 
real-world setting. State information is then pre-processed as needed and passed into the RL model 
as input features. Input features are fed forward through the model, commonly a deep learning network, 
which manipulates the data via a series of layered weighted matrix operations to produce an output 
(known as an “action” in the RL paradigm). The action is then provided to the environment, which will 
provide a reward (rewards can be dense or sparse depending on the environment) and cause a 
transition to a new state by taking the action in the current state. The nature and value of the reward is 
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context and developer dependent. As an example, a reward to an RL-based autopilot system might be 
a positive value for maintaining steady, level flight at cruise altitude, and negative for deviations from 
the expected thresholds. 

2.2 Deep Learning Overview 
Black box systems hide or reduce human insight into the internal logic governing system output 
decisions (predictions, actions, controls, natural language processing, etc.). Deep learning has shown 
remarkable successes within a number of industries. Given the success of deep learning and its non-
intuitive internal logic, this technique will be a focus throughout the document for understanding black 
box ML techniques in safety-critical aviation systems. 
As described above, deep learning is a technique within the discipline of machine learning and the 
broader artificial intelligence domain. At a high level, deep learning differs from other machine learning 
techniques by learning both relevant features and their respective weighting (or influence toward a 
particular output). In deep learning, the raw input (time series of text, images, sensor data, etc.) is fed 
directly into an artificial neural network model. In other ML techniques, relevant features might first be 
extracted from the input based on expert or domain knowledge prior to being fed into the system. The 
ML system would then learn appropriate weighting for these extracted expert features. This is shown 
in Figure 3. In addition to built-in feature extraction, deep learning techniques have additional benefits 
such as constant computation time and memory usage, homogeneous structures that enable a more 
intuitive trade-off between resolution and execution time (i.e. less layers speeds up time to execute, but 
may reduce accuracy), and the ability to generalize to different problem sets. 

 
Figure 3: High level difference between machine learning and deep learning systems. 
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2.2.1 Artificial Neural Networks (High Level Perspective)  
Artificial neural networks are computational algorithms inspired by simplified models of biological 
neurons found in brains. A basic ANN is shown in Figure 4. A typical ANN consists of an input layer, 
an output layer, and zero or more hidden layers. An ANN with two or more hidden layers is sometimes 
referred to as deep neural network (DNN). In this document, the term ANN is used generically, unless 
it is important in the context to distinguish between ANNs and DNNs. Each layer is composed of one 
or more nodes. Each node in a layer is connected to all the nodes in the previous layer using a weighting 
function. Within each node, the sum of all the weighted inputs is computed and then applied to an 
activation function. The activation function, which may include a bias, then determines the output of the 
node that is passed to the next layer. 
For example, the ANN in Figure 4 consists of an input layer, three hidden layers, and an output layer. 
The input layer has three nodes, each hidden layer has 6 nodes, and the output layer has 2 nodes.  

 
Figure 4: Schematic of an artificial neural network. 

The ANN depicted in Figure 4 is a simple implementation but does illustrate the major topological 
features of more complex deep neural networks and provides a basis for describing the issues with 
using an ANN for safety-critical applications. The graphic above indicates what is inside the “black box” 
of an ANN. This example structure is considered a “feedforward network.” Within a network 
implementation, there is an input layer (exposed to the outside to take in data) that feeds hidden layers 
eventually connected to the output layer. To train an ANN involves optimizing the values of the weights 
and activation functions of each connection and node in the neural net. The objective of training is to 
find values for these parameters to implement the desired ANN function and satisfy a given 
performance criterion. “Freezing” or monitoring the values of the nodes in the hidden layers at a 
particular moment can provide insight into the internal behavior of the black box system. However, due 
to the complexity of the learned task (number of variables and input scenarios), and the size of the 
deep learning network, concrete insights into the internal logic of the model can be rather difficult and 
unclear. 
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2.2.2 Artificial Neural Networks (Detailed Perspective)  
The utility of deep learning is founded on the implementation of Neural Networks, as shown in Figure 
3 and Figure 4. Neural networks are an approach for optimizing internal parameters (in this case 
network weights, similar to other adaptive system parameters) toward a preferable output, given a set 
of inputs. Unlike normal regression or classification techniques, Neural Network structures consist of 
multiple layers of “learnable” weights. As shown in Figure 4, this particular network has an input layer 
(the dimension of which, for example, might be the number of pixels in an image), several hidden layers, 
and finally an output layer predicting the value associated with the input (e.g., name, age, or gender 
associated with the input image). 
Each of the layers are comprised of a number of nodes that perform a weighted summation of their 
respective inputs, and then feed that summed value through an “activation” function. As shown in the 
inset diagram, the inputs 𝑎!, 𝑎", … , 𝑎# are multiplied by their respective weights 𝑤!, 𝑤", … , 𝑤#. The 
products of the inputs multiplied by their weights are then linearly summed. This summed value is 
passed to an activation function, of which there are numerous types.  
Ultimately, the activation function bounds the summed value. For instance, a rectified linear unit 
(“ReLU”) activation function might set all values less than 0 to a fixed value of 0, and all values greater 
than 0 are passed unaltered. Additional activation functions that have been implemented include 
sigmoid and hyperbolic tangent functions. Regardless of the specific form, activations functions provide 
the necessary non-linearity needed to adequately model real-world, nonlinear datasets, as well as 
enable more desirable convergence properties (i.e. avoiding undefined or vanishing gradients when 
updating the internal weights). 
Essentially neural networks perform a series of weighted matrix multiplication operations followed by 
non-linear bounding/thresholding functions. For this reason, Graphics Processing Units (GPU), Tensor 
Processing Units (TPU) and other custom hardware that excel at performing calculations on large sets 
of matrices have enabled massive improvements in the speed of neural computation. 
While it is currently difficult to fully expose the Neural Network black box (an active area of research as 
we will discuss later in this document), there are intuitive explanations for the internal logic of these 
models. It has been shown that the layers of neural networks learn to focus on increasingly more 
complex features within the input space.10,11,12 For instance, the first layer might learn to detect edges 
or sharp contrasts between pixel values. Further layers might learn to detect more complex shapes, or 
individual features such as eyes, noses, and mouths in the case of image recognition. The final layers 
could then learn the appropriate relations between the individual features detected in prior layers (i.e. 
eyebrows are positioned above the eyes, noses are between mouths and eyes, etc.). 
Once the data has been collected and the neural network topology developed, the network must be 
“trained” to optimize its predictions. In order to train neural networks, a large set of collected data points 
(representative of the problem domain) are fed through the internal weighted structure of the network 
topology to generate respective outputs. These outputs then go into a “loss function” (also known as 
cost function) to quantify how well the network performed based on expectations. Through gradient 
descent and back-propagation (not discussed in detail here), the weights of the network are updated 

 
10  Zeiler, et al. “Visualizing and Understanding Convolutional Networks.” ArXiv.org, 28 Nov. 2013, 

https://arxiv.org/abs/1311.2901. 
11  Olah, Chris, et al. “The Building Blocks of Interpretability.” Distill, 6 Mar 2018, 

https://distill.pub/2018/building-blocks/.  
12  Erhan, Dumitru, et al. “Visualizing Higher-Layer Features of a Deep Network.” (2009). 
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by minimizing the difference or quality of its output prediction relative to the expected output (or more 
advantageous output in the case of RL).  
Trained deep neural networks often can be greatly reduced in size by a process known as pruning. 
Common variations of pruning remove weights and nodes of the network that contribute the least to 
the network outputs.13 It is not uncommon to see pruning in excess of 90% of a network to minimally 
impact performance. This is especially useful for saving space and memory when embedding these 
models in electronics and mobile devices. From the assurance perspective, this process is analogous 
to removing “dead code” in software, which is intended to reduce the probability of unintended function. 

2.3 Machine Learning Systems Development Cycle 
The training-to-deployment pipeline for machine learning techniques is fairly consistent. This section 
aims to provide a common understanding of that pipeline (Figure 5). There are numerous means of 
mentally compartmentalizing the stack from data ingestion to deployment. However, each pipeline 
follows a similar set of processes: data intake and preprocessing, hyperparameter and configuration 
setting, model building, tuning, model training, model testing, and finally model deployment.  

 
Figure 5: Common machine learning pipeline. 

In the data intake and preprocessing step, datasets are retrieved from a centralized or decentralized 
database (or usually a simulation environment in the case of Reinforcement Learning). The data is then 
preprocessed (or “cleaned”) before being provided to a machine learning model. Preprocessing data 
might entail removing noise, normalizing the data distribution, extracting relevant features if desired, 
and/or augmenting the original data (changing lighting, modifying orientation, masking portions of the 
data) as an attempt to generate more training data or facilitate greater generalization of the network.  
Hyperparameters are chosen to configure the Neural Network structure and operate within the overall 
algorithm. Common hyperparameters could include the number of hidden layers, number of nodes, 

 
13  Cheng, Yu, et al. "A survey of model compression and acceleration for deep neural networks." arXiv.org, 

https://arxiv.org/abs/1710.09282v5 (2017). 



 

 © 2020 Aerospace Vehicle Systems Institute 10 

learning rate (which controls the step-size in gradient descent), number of epochs (number of times to 
cycle over the datasets) and various other parameters governing the optimization techniques (Adam, 
Moment based gradient descent, etc.). For the purposes of this document, it is not important to provide 
a detailed discussion of the different hyperparameters, of which there can be many. Additionally, there 
are configuration variables relevant to defining the simulated environment or scenario, particularly in 
the case of RL. In order to expose an RL agent to a variety of situations, it is common to randomize the 
initial conditions of a simulated environment. For example, in the case of a Neural Network that controls 
an aircraft taxiing at an airport, the number of aircraft or personnel, positions, speed, and heading of 
these objects might be randomized or fuzzified within a certain minimum and maximum range. 
Additionally, parameters defining the type of aircraft, weather, time of day, and the specific airport or 
terminal could also be configured. 
Model building or model selection can either be a manual or automated process in which different 
neural network topologies are generated. These network topologies can vary in a variety of ways such 
as input/output dimensions, the number of hidden layers, number of nodes in each of the layers, 
activation functions after each layer, normalization techniques (dropout,14 batch normalization15) in 
between each layer, and network type (convolution, recurrent, fully-connected). Some of these 
parameters defining the network topology were likely provided in the hyperparameter tuning step. It is 
not uncommon to develop multiple neural networks for a given use case and choose a single or 
ensemble of the best performing networks.  
Once the preprocessing steps have been completed, hyperparameters defined, and model(s) 
developed, the actual training-to-testing processes can occur. (Note, the description in this section 
leans toward supervised learning processes). To begin, the data is usually split into separate training, 
validation and testing sets.16 The training set is used to update the neural network weights over a 
number of epochs (training cycles) toward the expected output. The validation set (not always included, 
but preferable in the case of supervised learning) is used to select the best subset of models before 
explicitly testing. The validation set (note: “validation” dataset is not to be confused with “validation” in 
the traditional systems engineering context of “V&V”) aids in encouraging more generalized models 
that help mitigate the bias-versus-variance tradeoff (i.e. a biased model is one that does not fit the 
training data well, while a high variance model fits the data too well). Finally, the testing dataset is fed 
into the network in order to evaluate the quality of the model.  

 
14  Srivastava, N., et al., “Dropout: a simple way to prevent neural networks from overfitting,” Journal of 

Machine Learning, Res. 15, 1 (January 2014), pp. 1929-1958. 
15  Ioffey, S. and Szegedy, C., “Batch Normalization: Accelerating Deep Network Training by Reducing 

Internal Covariate Shift,” ArXiv.org, 2 Mar. 2015, https://arxiv.org/abs/1502.03167. 
16  Kohavi R., “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” 

Proceedings of International Joint Conference on AI, 1995, pp. 1137–1145. Retrieved from 
https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf on July 31, 2019. 
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Figure 6: Automotive industry machine learning pipeline cycle. 

A model will be deployed in a more real-world setting once it has been adequately tested in simulation 
or on the available training set. Figure 6 illustrates the intermediate step performed by many system 
designers, especially those in the automotive industry, who deploy their trained models in a closed-
course environment, where the test conditions can be appropriately controlled (see safety reports from 
Uber,17 Waymo,18 Ford,19 and General Motors20). Furthermore, closed-course environments enable the 
generation of new testing scenarios (and thereby more data for a ML model to ingest). Such closed-
course testing is conceptually similar to aerospace flight testing, though flight testing typically has higher 
costs and complexity. Finally, the system (incorporating a machine learning model), is deployed in a 
real-world environment. Performance is monitored and operational characteristics are recorded. Often 
the cycle between training and testing is repeated in a cyclic fashion to continually refine the system 
design.19 It is also important to note that the system should only be deployed in environments in which 
appropriate and adequate testing has been conducted. This is known as the Operational Design 
Domain (ODD) in the automotive industry (Figure 7). In this case, a vehicle is only allowed to operate 
in its ODD, for which conditions have been appropriately tested and ensured to provide safe operation. 
The operational domain accounts for factors such as geography, road types, speeds, weather, and 
laws and regulations. This concept could easily be extended to the aviation environment. 

 
17  Uber Advanced Technologies Group: A Principled Approach to Safety, 2018. Retrieved from 

https://www.readkong.com/page/2018-uber-advanced-technologies-group-a-principled-approach-
5983176?p=1 on June 19, 2019. 

18  Waymo (2018): “Waymo Safety Report. On the Road to Fully-Safe Driving,” 2018.  
https://storage.googleapis.com/sdc-prod/v1/safety-report/Safety%20Report%202018.pdf. Retrieved on 
June 19, 2019. 

19  Markaby, S., A Matter of Trust: Ford’s Approach to Developing Self-Driving Vehicles,” 2018. 
https://medium.com/self-driven/a-matter-of-trust-fords-approach-to-developing-self-driving-vehicles-
12f602887822. Retrieved on June 19, 2019. 

20  General Motors, “2018 Self-Driving Safety Report,” 
http://autocaat.org/webforms/ResourceDetail.aspx?id=4823. Retrieved on June 19, 2019. 
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Figure 7: Automotive industry’s concept of operational design domain.18  

As a concluding remark, the pipeline above has subtle differences depending on the machine learning 
technique employed (Reinforcement Learning, Supervised Learning, or Unsupervised Learning). For 
instance, UL and SL typically use a pre-stored dataset, whereas RL often employs a simulated 
environment. The RL “datasets” are provided via the simulated environment. The concepts of data 
preprocessing, hyper-parameter tuning, model selection and stages of training to deployment still apply, 
however, the mechanisms for parallelizing the training of ML models and acquiring data has some 
differences. 

2.4 Machine Learning Related Complexity Analysis 
Machine learning techniques have been applied to increasingly complex environments. Likewise, the 
prerequisite computational resources necessary for state-of-the-art performance in these complex 
problem domains have also risen exponentially.  
Artificial Intelligence is now used to compete and perform in a range of activities from human dominated 
strategy games (Chess, Go, Starcraft II) to vehicle control and autonomy (self-driving cars). The 
complexity of these environments can be analyzed through various metrics such as the rate of data 
generation or the search space of the environment. The search space can be envisioned as a tree-
based graph structure where each node in the tree defines a new state (e.g. the board state in chess 
or the state of the vehicle in a fixed frame of the environment), and the edges connecting each node 
are one of the available actions taken to generate a new state within the environment. More formally, 
the search space can be calculated via the breadth (number of actions at each interaction point), and 
depth (the length of the game or scenario). As an example, the typical total length of a car trip per day 
might be 1.5 hours. The search space for Chess is 10123, while that for Go is 10360.21 When learning in 
domains with discrete action spaces, the derivation of complexity is more straightforward, as there is a 
finite set of actions at each time-step of interaction. However, in environments where the action space 

 
21  Silver, D., et al. “Mastering the Game of Go without Human Knowledge.” Nature News, Nature Publishing 

Group, 18 Oct. 2017, www.nature.com/articles/nature24270. Retrieved June 19, 2019. 
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is inherently continuous or real valued, the search space needs to be approximated by discretizing the 
available action space. For instance, the speed and steering angle of an autonomous vehicle has a 
range of continuous values applicable at each time step. In such a case, it might be helpful to think of 
complexity as the amount of data generated over a fixed period of time by the various onboard sensors 
or the amount of computational resources needed for development. For autonomous self-driving cars, 
roughly 4 terabytes worth of data are generated every 1.5 hours.22 For modern machine learning 
systems, the amount of computational and data requirements is of the same scale.  
The projected throughput necessary for modern ML systems can be greater than 1000 petaflops per 
second for one day (a petaflop is 1015 floating point operations per second).23 It is common that trained 
ML models require an extensive network of interconnected computational resources, as the data 
generation and/or training process is often parallelized to enable optimization of multiple agents 
simultaneously. This is done to explore more of the environment’s multi-faceted search space or 
develop multiple ML strategies that have unique objectives.24  It should be noted that once the network 
is trained and the weights fixed, the computational resources needed may be greatly reduced. 

2.5 Machine Learning Technical and Industry Trends 
To conclude the high-level overview on the current state of machine learning and discussion into 
prerequisite ML knowledge, it is important to understand the current trends within AI and more 
specifically ML. The graphic in Figure 8 highlights technical trends. 
The generation of software has become increasingly automated. The graph in Figure 8 highlights trends 
in computer vision software development. However, such trends in software development are not 
unique to computer vision. Historically (and still widely prevalent today) software was hard-coded (i.e. 
fixed rule-based logic is used as the driving behavior of software processes). Increasingly, software 
was (and is being) developed that learned its own internal weighting of relevant, but still hardcoded 
features. Fast-forward to more recent times: software is not only learning the relevant features given a 
set of inputs (e.g. a convolutional neural network given a set of inputs learns to decipher shapes, noses, 
mouths, entire faces automatically), but is also constructing the model topology. A number of 
companies are offering software as a service (SaaS) solutions to enable a broader non-technical 
audience the capability of developing trained ML models through automated processes (see Google 
AutoML for example25). Through this service, end users can provide their own domain specific data, 
and the system will output models best suited/optimized for the particular data given by learning to 
optimize a model’s internal logic (model weights) as well as the model’s structure/topology (number of 
nodes, layer size, layer types: convolutional, fully-connected, recurrent, etc.). If the trend continues, a 
number of industries will utilize artificially intelligent software to further refine and develop new task-
specific AI software. 

 
22  Geonovum and Geospatial. “Self-Driving Vehicles [SDVS] & Geo-Information,” 

https://geospatialmedia.net/autonomous-vehicles-geospatial-report.html?utm_source=press-
release&utm_medium=referral&utm_campaign=july2017. Retrieved June 19, 2019. 

23  Amodei, Dario. “AI and Compute.” OpenAI, OpenAI, 16 May 2018, https://openai.com/blog/ai-and-
compute/. Retrieved June 19, 2019. 

24  “AlphaStar: Mastering the Real-Time Strategy Game StarCraft II.” DeepMind, 
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/. Retrieved June 18, 
2019. 

25  “Cloud AutoML - Custom Machine Learning Models | Google Cloud,” Google, 
https://cloud.google.com/automl/. Retrieved June 18, 2019. 
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Figure 8: Automated software generation in computer vision.26 

2.6 Certification Challenges When Using ML in Safety-Critical Applications 
The advantages of AI/ML coupled with the rapid advances in the development and deployment of ML 
as described above have led to an immediate desire to incorporate ML technology in certifiable 
aerospace systems. Aviation certification authorities and applicants have grown interested in 
understanding how ML systems can be assured as safe for flight given that they differ fundamentally 
from traditional systems for which requirements are explicitly traceable to specific software and 
hardware design elements. Tools and processes developed to assure existing systems do not 
necessarily extend to data-defined systems such as those incorporating ML. This has led to a number 
of questions and observations that must be addressed by the aerospace industry (and which led to the 
formation of this project):  

1. Industry standard development assurance processes such as RTCA DO-178C, RTCA DO-254 
do not have guidance for ML algorithms. If machine learning is used, it may not be possible to 
satisfy all RTCA DO-178C and RTCA DO-254 objectives such as those associated with the low-
level requirements, implementation, integration, and verification activities. The main reason for 
this is the lack of a meaningful representation of the internal structure of the machine learning 
implementation. For example, while it may be possible to extract and represent the weights and 
connections between the neurons of an ANN, the information does not describe the intended 
behavior.  

2. Some machine learning implementations may exhibit adaptive behavior, which may impact 
traditional notions of repeatability. Even in implementations that are non-adaptive, meaning the 
implementation is fixed after training, claims for repeatability may not be trusted since the internal 
states may not be fully understood.  

 
26  Karpathy, A., “TRAIN AI 2018 - Building the Software 2.0 Stack.” Vimeo, 10 May 2018. 

http://vimeo.com/272696002. Retrieved on June 19, 2019. 
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3. Machine learning implementations require extensive data for training. For a subset of flight tasks, 
training data could be developed. Because of the infinite possibilities for routine, non-routine and 
emergency conditions, development of extensive training data for these conditions may not be 
feasible. Therefore, the operation of the machine learning implementation may need to be 
bounded based on the scope of the training and verification. 

4. Training machine learning implementations may be performed using datasets from live, or 
historical interactions. The data may also be provided by simulations that mimic the actual 
behavior of the physical system. If live or historical data is used, then the data should be a true 
representation of the system behavior over its entire range of foreseeable operational conditions. 
If simulators are used, then the simulator should be qualified to appropriately model system 
behavior throughout the range of foreseeable operational conditions.  

5. Some machine learning algorithms process sensor data such as radar, light detection and 
ranging (LIDAR), and high-resolution cameras to detect and identify objects to support flight 
automation. The flight automation system using these sensors could have degraded 
performance under different conditions such as snow, inflight-icing, rain, fog, smoke, different 
light conditions, and different viewing angles which could negatively affect their intended 
functionality of the flight automation system relying on these sensors. Also, small imperfections 
in the sensor (e.g. scratched lens) or a sensor that is not calibrated could negatively affect their 
performance. Sensors may also degrade over time. 

6. It may be difficult to demonstrate that a machine learning implementation does not have any 
unintended functionality. Existing verification methods such as traceability and coverage 
analysis cannot be used to demonstrate that the machine learning implementation does not 
contain unintended functionality. For example, in an artificial neural net implementation, the 
weights and interconnects may not be analyzable, making it impossible to perform a reverse 
trace from the ANN implementation to its requirements. 

7. Machine learning implementations are trained over a finite set of inputs and outputs and are 
expected to generalize, i.e. to behave correctly for previously unseen inputs. However, machine 
learning implementations can react in unexpected and incorrect ways to even slight 
perturbations of their inputs. This unexpected behavior of machine learning implementations can 
result in unsafe systems or restrict the usage of machine learning implementations in safety-
critical applications. Hence, there is a need for methods that can provide formal guarantees 
about ML implementation behavior. Unfortunately, manual reasoning about large ML 
implementations is impossible, as their structure renders them incomprehensible to humans. 
Therefore, automatic verification techniques are needed, but here, the state of the art is a limiting 
factor. There exist approaches for finding adversarial inputs, but the ability to verify their absence 
is limited.27 

8. Machine learning implementations can periodically fail to perform their intended function due a 
high functional error rate*. The automotive industry is facing the same challenge of how to safely 
introduce ML implementations for automobile driving automation. Salay, Queiroz, and Czarnecki 
state, “a machine learning model typically does not operate perfectly and exhibits some error 

 
27  Katz, G., et al., “Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks,” Elsevier Annual 

Reviews in Control, Volume 34, Issue 1, April 2010, pp. 163-174. https://arxiv.org/abs/1702.01135, 
Retrieved June 19, 2019. 
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rate. Thus, correctness of a machine learning component, even with respect to test data, is 
seldom achieved and it must be assumed that it will periodically fail.”28 

*Note: An ML system has “failed” if it exhibits a systemic error manifesting as non-repeatability of input to output. 
These are probabilistic variations and not random occurrences. 

 
28  Salay, R., Querioz, R., and Czarnecki, K., “An Analysis of ISO 26262: Using Machine Learning Safely in 

Automotive Software,” www.dtic.mil/dtic/tr/fulltext/u2/1003182.pdf, Retrieved May 16, 2019. 
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3 Safety Considerations When Using Machine Learning 
Safety is of primary importance in the aerospace domain. Traditional aerospace processes such as 
SAE ARP4754A, SAE ARP4761,29 RTCA DO-178C, and RTCA DO-254 form the current accepted 
basis for safety assurance processes. Application of ML techniques in safety-critical systems pose a 
series of challenges to accepted processes. AI researchers identify a series of failure modes that may 
be related to using ML. Safety considerations are analyzed in order to “mitigate the accident risk”.30 
Moreover, accidents can be defined as “unintended or harmful behavior that may emerge from any 
systems (e.g. a software) when we specify the wrong objective function, are not careful about the 
development process, or commit other software-related implementation errors.”30 As applied to safety-
critical aerospace systems, these considerations become even more important as automation and 
autonomy implement complex tasks. 
The application of machine learning systems to safety-critical areas provides new and additional 
challenges to safety engineering, such as an increase in the uncertainty that correct predictions and 
subsequent actions will be made, due in part to the nature of most ML algorithms outputs. Safe use of 
machine learning depends on the ability to assure that systems employing ML capabilities behave as 
intended or that unintentional risks and harmful behaviors are mitigated. Based on the observations 
and concerns presented by Amodei, et al.,30 Faria,31 and Dawson,32 the list below itemizes some of the 
possible failure modes of ML systems:  

• Specification problems: The incorrect specification of the formal objective function, where the 
solution designed and deployed by a human optimizes an objective function that results in 
harmful and unintended results. 

• Robustness problems: Instances where a solution may have been specified by the correct 
objective function, but problems occur due to poorly curated training data or an insufficiently 
expressive model. 

• Oversight problems: Instances in complex environments where feedback to assist a solution 
to achieve its objective function is expensive or computationally inefficient. Scalable oversight: 
ML system performs poorly because of the limited feedback input available. 

• Adverse side effects: ML system disturbs the environment in negative ways while performing 
the designed function.  

• Unsafe evolution: ML system does something harmful during its evolution, while it adjusts its 
parameters based on external feedback. 

• Distributional shift: ML system does not recognize an environment different from its training 
environment or dataset. 

The failure modes mentioned above derive from limited access to the actual specified function, 
insufficient or poorly curated training data, or an insufficiently expressive model and/or deficiencies in 

 
29  SAE International, "Guidelines and Methods for Conducting the Safety Assessment Process on Civil 

Airborne Systems and Equipment”, ARP4761, Dec 1996. 
30  Amodei, D., et al., “Concrete Problems in AI Safety,” https://arxiv.org/pdf/1606.06565.pdf. Retrieved May 

26, 2019. 
31  Faria, J., “Non-Determinism and Failure Modes in Machine Learning,” 

https://ieeexplore.ieee.org/document/8109300/. Retrieved May 26, 2019. 
32  Dawson, N., “AI Safety Literature Review,” (2017) https://bitsandatoms.co/ai-safety-literature-review/. 

Retrieved May 26, 2019. 
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part of the learning process. The ML system designer could mitigate unsafe evolution by taking 
advantage of risk-sensitive performance criteria; by expanding the simulated scenarios considered 
during training or retraining; by bound exploration for a new set of parameter values constraining 
outputs to certain regions of state space known as safe, so that the ML system can recover to safe or 
bounded behavior; by separating safety and performance function and obeying constraints on the 
safety function with high probability. 
Additionally, in order to build safe and predictable systems it is critical to employ safety checks to detect 
such failures, and ultimately have statistical assurances about how often they happen. Other 
approaches focus only on modeling the distribution of errors of a model and training on multiple 
distributions. From this, it is also possible to evaluate when a set of inputs is too novel so that a 
reasonable performance cannot be expected. Those practices theoretically would support designing 
models that could bound their performance on new verification dataset distribution. 
The ideal outcome of these approaches to limit side effects would be to prevent or at least bound the 
incidental harm an ML system can cause. Useful strategies to bound side effects would certainly not 
be a replacement for extensive testing or careful consideration by designers of the individual failure 
modes of each deployed system. 
Formal rewards or objective functions are an attempt to capture the intended behavior, but it has been 
shown that ML systems can output unintended behavior even when the objective function is correctly 
optimized.33,34 There are several reasons for this problem including: 

• Partially observed goals: it is assumed for ML systems that reward is directly experienced, 
even if some aspects of the environment are only partially observed. Tasks often involve 
representing the world into some objective state, through imperfect perceptions and those 
imperfections lead to maximizing rewards without improving intended performance. 

• Complicated systems: the probability that there is a viable hack affecting the reward function 
also increases significantly with the complexity of the ML system and its available strategies.  

• Abstract reward: abstract concepts are captured by sophisticated reward functions; such 
abstraction demand makes it vulnerable to adversarial counterexamples.   

• Feedback loops: when an objective function comprises a self-amplifying component that 
distorts specified intended behavior. 

• Environmental embedding: in the formalism of reinforcement learning, rewards are considered 
to come from the environment. In addition to the risk that environmental embedding may present 
safety concerns due to a lack of robustness, it may also create cybersecurity concerns due to 
intentional manipulation of the embedded environment. 

Traditionally, embedded software that has been applied to safety-critical areas has required near-full 
predictability of behaviors under all conditions, a detailed design with a rigorously specific set of 

 
33  Thompson, A., “Artificial Evolution in the Physical World (1997),” from Intelligent Robots to Artificial Life 
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requirements, and a comprehensive set of verification activities to confirm the software implementation 
fulfils the specification.35 
It should be noted that the need for formalized safety assurance has been recognized for decades, and 
SAE International has developed relevant Aerospace Recommended Practices (ARP’s). SAE 
ARP4754, Guidelines for Development of Civil Aircraft and Systems, was published in 1996 (currently 
updated to revision 4754A). Its tightly-coupled sibling is SAE ARP4761, Guidelines and Methods for 
Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment. While these 
and additional guidelines have been created, including RTCA DO-178C for software development and 
RTCA DO-254 for hardware development, new guidance must be created in order to guide the 
development life cycle for systems incorporating ML. These new standards will need to be incorporated 
in the suite of guidance material shown in Figure 9 to support future certification of aerospace systems 
incorporating ML. 

 
Figure 9: Safety assurance guidance. 

To address the gaps in available guidance, elements of the ML system development life cycle must be 
analyzed in the context of the considerations described above. The following sections employ available 
literature and project members’ expertise to identify gaps in knowledge or guidance that impact the 
aerospace industry’s ability to adequate assure the safety of systems incorporating ML technologies. 

3.1 Datasets 
The first consideration for a “curated” dataset is about the “quality” of its measures. However, the 
definitions for current data curation standards are related to data organization, integration, and life cycle 
management. Additionally, the data curator role is more concerned with maintaining and managing 
metadata; including involvement in determining the best practices for working with that data and 
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supporting decisions on which data asset is more appropriate for use within a machine learning 
model.36  
Below is a list of factors that influence data quality for ML solutions, according to Géron:37 

• Representativeness: Training data should contain all foreseen scenarios in which the system 
will be used; training data should contain a representative number of rare examples; features in 
the dataset should be selected or generated from raw features according to their relevance to 
the function that the ML model will perform; in the case of unsupervised ML algorithms it should 
be checked if the information that is expected to be extracted from the data has been encoded.  

• Labeling: In supervised learning, algorithms learn from a dataset of examples labeled with an 
output variable representing the right answer. Thus, the data should be collected and preserved 
in a way that avoids corruption of the labels. Each example in the training dataset should be 
checked to assure that it has an associated output (label).  

• Sufficiency: Data should be sufficient in quantity (statistical significance), which will depend on 
the problem domain. In general, the more good-quality data, the better; but processing more 
data comes with a price of computational burden. In order to assure data quality, a data curation 
process is a good practice, i.e., to perform data organization, integration, management through 
its life cycle in order to make it useful for data-driven uses such as ML applications.  

The majority of datasets contain bias, noise, constraints, outliers and missing values. That is the reason 
for a designer/developer of the solution to execute some steps in order to guarantee the quality of a 
curated dataset. Some of the data preparation activities that are part of machine learning model 
development are: 

• data cleansing aimed at removing irrelevant information; 
• data transformation as part of formatting, completing data properly and generating new features 

from the raw data;  

• data augmentation to get a larger dataset, (this should be done cautiously to avoid injecting 
uncertainty to the dataset); 

• verification that data inputs are in the expected format;  

• verification that data inputs are free from discrepancies in values or missing data;  

• verification of data inputs for dependency on other inputs; 

• verification that data inputs are actually available during system operation;  
Data quality assurance should be part of a data-driven model design to specify a set of high-level 
requirements to accomplish the desired system behaviors. After this, low-level and derived 
requirements relating to dataset pre-processing and post-processing and to model implementation can 
be specified. 
Finally, it is expected that during design and development, designers will select appropriate models 
and employ the best datasets available to develop a reliable ML-based system that reliably exhibits its 
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intended behavior. However, implementations should also provide an ability to detect inputs that result 
in undesired behavior during runtime and identify these inputs as new requirements or constraints. In 
other words, the input must be included in the dataset for future retraining to ensure that the dataset 
grows more representative over time, thus ensuring the ML model behaves in foreseeable conditions. 

3.2 Adversarial Inputs and Robustness 
The existence of adversarial examples raises a more general concern: it indicates that the ANN might 
be responding to completely different input features than do humans, and that rather than constructing 
human-like generalizations from the training data, it has merely memorized exactly what it has seen. 
Although adversarial examples are just that, constructed by “adversaries,” they raise the concern that 
classifications learned by ANNs may not be robust, and that naturally arising inputs different from the 
training set, yet close to it, may be classified incorrectly. Since we do not completely know how ANNs 
work, we cannot currently build a fully principled defense against this (or, dually, verification of its 
absence), but there are some promising ideas. 
Practical application of machine learning in aerospace systems requires an understanding of how to 
quantify and ultimately predict bounds on the behavior of such systems when subject to inputs that 
were not considered during the training of the learning system. Quantifying the robustness of these 
systems, which we generally define here as the tolerance of system outputs to variations in the inputs, 
over the range foreseeable operating conditions, is central to system performance and, in some 
systems, may affect system safety.  
We can consider at least two main types of sources for these variations: inputs that are intentionally 
modified, for example by an adversarial actor, with the purpose of misleading the decision-making 
algorithm; and variations in inputs that arise naturally in the course of system operation, not due to any 
intentional actions. Among the latter unintentional variations, we may further distinguish minor 
variations due to sensor noise, major variations such as might occur in the case of degraded or failed 
sensors, and variations due to inputs arising due to new operational conditions that were not well 
represented in the original training, verification or validation datasets.  
Robustness of a machine learning system can be defined as the ability to identify the features that were 
encountered during training, even in a noisy environment. Regardless of the source of the input data 
variation, the robustness of the system depends on the ability of the learning system to generalize 
features that were encountered during the training of the system, so that the modified, degraded or 
unexpected inputs are processed appropriately. In case of unintentional data variations, noise or 
degradation models may help constrain the input state space and/or be incorporated in training. In the 
case of adversarial inputs, the targeted system may need to handle inputs that are intentionally varied 
with a goal of causing unintended system behavior. This presents unique challenges to designing 
robustness into the learning system that have led to an active subfield known as Adversarial Machine 
Learning. This subfield addresses both “deliberate” attempts to adversely affect the machine learning 
algorithms, as well as “natural” phenomena such as sensor degradation and environment wear/aging 
of the natural environment. 
There is a growing body of literature in Adversarial Machine Learning that considers both the analysis 
of vulnerabilities in learning algorithms and techniques to make learning more robust. Adversarial 
attacks may be classified by the point in the system life cycle at which the attack takes place: “evasion 
attacks” occur after a system is deployed, while “poisoning attacks” are attempts to corrupt the learning 
system by manipulating training data.  
An example of an evasion attack may be an attempt of a spam email generator to avoid detection by 
intentionally changing features of the email content and monitoring the success rate of defeating spam 
filters. Such attacks can be performed with or without the knowledge of the specific training algorithm 
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that is used by the machine learning system (“white box” or “black box” respectively). Since these types 
of attacks could potentially affect aerospace systems that were trained prior to certification and 
deployment, design assurance processes must account for these types of attacks. Some new 
techniques have been emerging that may improve robustness with respect to evasion attacks. The 
literature suggests that white box attacks are potentially more dangerous due to the attacker’s access 
to more information about the system. This should lead to considerations about the usage of open-
source software to implement machine learning. Unrestricted or publicly available software could open 
safety breaches in a system classifier for instance with potentially severe consequences on the safety. 
This consideration extends to the knowledge of training datasets and training methods. While 
incorporation of third-party content in aerospace systems is not unique to machine learning, there are 
unique characteristics that must be incorporated in engineering processes used to assure third-party 
content. Persistence of training data and the inherent obscurity of the machine learning architectures 
make it essential that these assurance processes be adapted to ensure that malicious content cannot 
create system failures. 
Poisoning attacks generally require access to the training dataset in order to manipulate the learning 
system behavior. In this regard, good cybersecurity controls during system development are necessary 
to ensure the integrity of the training dataset, as elucidated in the previous section. However, systems 
that may employ unsupervised learning, or learn from actual environments encountered during 
operations, might be more susceptible to poisoning and need to have additional requirements to ensure 
continued airworthiness. From this standpoint, systems that allow continual learning and adaptation 
after deployment may be seen as more susceptible to adversarial attacks, while systems that are 
“frozen” after deployment are naturally more robust. Note that if such a “frozen” deployed system is 
periodically retrained with a new operational dataset, the re-trained model may become sensitive to 
adversarial attack. 
The very existence of adversarial examples raises a more general concern: it indicates that a machine 
learning algorithm might be responding to input features that are completely different from those that 
are recognized by humans, and that rather than constructing human-like generalizations from the 
training data, the system has merely memorized exactly what it has seen, based on some spurious 
characteristics. Although adversarial examples are just that – artificially constructed by “adversaries” 
and thus unlikely to occur spontaneously – their existence raises the concern that classifications formed 
by machine learning systems may not be naturally robust. That is, if a classifier may be significantly 
misled by very minor intentionally designed input modifications, it is possible that naturally arising, 
unintentional input variations may also lead to vastly incorrect classifications. Considered from this 
standpoint, the source of data variation – i.e., whether due to intentional adversarial attacks or normal 
input variations – is largely irrelevant when considering robustness. A system that is highly sensitive to 
input variability will not be safe regardless whether that variability is caused by an intentional attack or 
by natural changes in system’s environment. In other words, robustness may be considered as a 
system’s characteristic that is independent from the adversarial or non-adversarial nature of data 
variability.  
In the sections below, we introduce concepts from robust and adversarial machine learning that should 
be considered when adapting design assurance and certification processes to include non-deterministic 
machine learning systems. These are considered for both a classifier and a dynamical system example. 
As Benjamin Recht stated, “Understanding how to properly analyze, predict, and certify such systems 
requires insights from current machine learning practice and from the applied mathematics of 
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optimization, statistics, and control theory.”38 The very nature of machine learning algorithms makes it 
difficult to predict and analyze their behavior, so we cannot build a fully principled defense against 
adversarial attacks (or, dually, verification of their absence), However emerging research in this field is 
leading to improvements in demonstrable system robustness that will help assure the safety of future 
systems. 
3.2.1 Definition of Robustness 
What is understood as robustness depends largely on the system’s intended function. The two main 
cases that may be considered are discrete-output classifiers, and continuous-output regression 
algorithms.  
In case of regressors, robustness is synonymous with bounded input-output sensitivity. One possible 
definition of a regressor that is robust with respect to input variations is that the following condition must 
hold for some properly selected 𝛿 and 𝜀: 

|𝑓(𝑥 + ∆) − 𝑓(𝑥)| ≤ 𝛿			if			‖∆‖ ≤ 𝜀	

It is readily seen that this notion of robustness is closely related to continuity of the regression mapping 
𝑓. A regression function that is not continuous will naturally be not robust, as infinitesimally small input 
variations may lead to finite step changes in output, resulting in infinite input-output gain. Of course, 
the converse does not follow: a system that is continuous need not be necessarily seen as robust. The 
exact meaning of the robustness condition depends on how the allowed output variation 𝛿 is related to 
the expected input variation 𝜀. In one case, a linear relationship 𝛿 = 𝐾𝜀 may be specified, leading to 
the following robustness condition: 

|𝑓(𝑥 + ∆) − 𝑓(𝑥)| ≤ 𝐾	‖∆‖	

This is equivalent to the regressor function being Lipschitz continuous, and the constant 𝐾 may be 
interpreted as the worst-case input-output gain of the system. This highlights the connection between 
robustness and bounded gain; roughly speaking a robust system has a low input-output gain. In this 
view, assuring robustness is equivalent to limiting the gradient of the trained mapping 𝑓. A number of 
well-known regularization techniques may be applied to assure that the gradient remains bounded and 
below a prescribed value. In this sense, training a robust regressor is relatively trivial.  
It is worth noting that increasing the system’s robustness via lowering its input-output gain does not 
necessarily have to be beneficial or desirable. An absolutely robust regressor will have zero input-
output sensitivity and will not be reacting to any input variations at all. In any practical application, the 
very purpose of employing a machine learning regressor is to produce different outputs for different 
inputs. A trained regressor should have its input-output gain sufficiently high to represent the desired 
system behavior, but low enough to preclude undesired behavior. The appropriate specification of the 
desired 𝛿, 𝜀 relationship depends therefore on a priori knowledge of the system’s environment and its 
performance requirements.  
In the classification case, the common robustness definition requires that for a particular input 𝑥 and an 
appropriately specified 𝜀 the following condition holds 

𝑓(𝑥 + ∆) = 𝑓(𝑥)	if	‖∆‖ ≤ 𝜀	
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Intuitively speaking, a classifier is robust near an example 𝑥 if its output remains constant within an 𝜀 
neighborhood of 𝑥. Note that this concept of robustness is closely tied to a prescribed set of input 
examples of interest. A classifier can be robust at a finite number of examples but cannot possibly be 
robust everywhere within its input domain. The only classifier that is robust everywhere would have to 
be outputting the same value for all possible inputs, i.e. would not be able to classify at all. For a 
classifier to be able to classify, there must be at least one classification boundary on which the output 
value changes from one class to another. On such boundaries, the classifier in question will obviously 
be not robust. 
The definition of robustness often depends on the choice of the norm used to characterize the size of 
the input variation. There are many different formulations for a norm that may be suitable for different 
applications of machine learning. For image processing, the 𝐿$ norm is often found most useful, but 
the ultimate choice of a norm is dependent on the application. 
For the above reason, training a robust classifier depends on the particular training (or validation) set 
used. A classifier that is certifiably robust on one training set may turn out to be not robust on even 
slightly different training set, even if both sets are constructed with the very same application in mind. 
This dependence of robustness on the training set is in stark contrast to the regressor case. It is quite 
possible (and indeed desirable) to have a regressor that is uniformly robust in its entire input domain. 
On the other hand, a uniformly robust classifier is impossible by definition; it can be robust only with 
respect to a particular training set on a collection of disjoint neighborhoods. 
3.2.2 Training Considerations for Improving Robustness 
As explained above, training a robust regressor is conceptually trivial and equivalent to simply limiting 
the input-output gain, or the slope of the response surface on the trained algorithm. On the other hand, 
training a robust classifier is both non-trivial and inextricably tied to the selection of the training set. 
Accordingly, the latter problem has received significant attention and there are some interesting 
techniques available to assure robustness for specific cases. Here we review a few examples and 
discuss their implications for the general problem. 
Wong and Kolter39 address the case of a multi-layer ReLU network, using the robustness definition 
discussed in the previous section, with the input perturbations ∆ restricted to “adversarial polytopes” 
‖∆‖$ ≤ 𝜀. For a finite number of examples with a finite number of target classes, their technique aims 
to assure that classifier’s output remains constant within an 𝜀 polytope surrounding each example 𝑥. 
As such, a trained network is robust only on a finite set of 𝜀 neighborhoods tied to a particular training 
set. 
The training method of Wong and Kolter makes a clever use of the piece-wise linear nature of a ReLU 
network. Output of each node is bounded by three linear constraints which allows using linear 
programming to find bounds on network output, given the assumed bounds on its inputs. A robust 
training algorithm is proposed that minimizes the upper bound on the loss function over all adversarial 
polytopes. The most attractive part of the method is its approach to verify whether the network is robust 
in the vicinity of a particular training example – readily addressable by the use of linear programming. 
Those examples that are identified as robust are said to have been issued robustness “certificates” – 
i.e. they are guaranteed to maintain the same value of the classifier’s output within the entire ε 
neighborhood. Interestingly, the training method does not guarantee that all training data points will 
receive such certificates. For some examples there will be no robustness guarantees, depending on 
how the training algorithm converges.  
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It is worth noting that the method of Wong and Kolter assures robustness with respect to any input 
perturbations that are smaller than 𝜀, regardless of the adversarial or non-adversarial nature of such 
perturbations (this despite the “adversarial polytope” title). This underscores our previous remarks that 
guaranteed robustness is independent from the concept of adversarial attacks. The benefits of this 
technique are significant, as adversarial attacks can be conducted with very imperceptible perturbations 
and mislead the classifier in most cases. An example in Figure 10 shows how a perturbation with a very 
low norm value may change the classification from correct (“butterfly”) to incorrect (“hook”, “claw”).40 

 
Figure 10: Example of an adversarial attack. 

It should be noted that the clever use of the piece-wise linear nature of a ReLU network in this method 
is essentially a rebranded and revamped reincarnation of the hinged-hyperplane regression method 
that was well known in mid-1990s.41 This underscores a general observation that guaranteed 
assurance of robustness is far easier for specialized forms of machine learning whose architecture 
features allow simplification of analysis. It remains to be determined what real-world applications allow 
such simplifications. 
Another example of a robustness-focused training algorithm is given by Raghunathan, Steinhardt and 
Liang,42 who use the same definition of classifier robustness based on ‖∆‖$ ≤ 𝜀. Their method is not 
limited to piece-wise linear nodes and in fact allows arbitrary differentiable (or even almost-everywhere 
differentiable) activation functions. However, the method is limited to architectures with single hidden 
layers only. The method approximates an upper bound of network’s growth within each 𝜀 neighborhood 
and uses a penalty term within the loss function to limit that growth term. 
Just like in Wong and Kolter, the method of Raghunathan, Steinhardt and Liang does not guarantee 
robustness around all training examples. If the network is found to be robust around a particular 
example, that example is given a certificate. However, for some examples there may be no robustness 
guarantees. 
Again, despite referring to “adversarial examples,” the method is applicable to any input perturbations 
bounded by 𝜀. There is nothing particularly “adversarial” about the technique and the name seems to 
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be used solely to fit the paper into the popular field. Instead, the method has wider applicability to input 
variation problems that may include sensor noise or other random perturbations.  
It is also worth noting that this method too depends on a special network structure – namely the single 
hidden layer. While mathematically a single hidden layer is always sufficient to approximate any 
regression or classification problem to arbitrary accuracy,43 the current practice is to take advantage of 
multilayer architectures to leverage the available modern training algorithms. The method of 
Raghunathan, Steinhardt and Liang does not allow such architectures. This again underscores the 
apparent tradeoff between the network architecture simplicity and the ease of assuring robustness.  
Another common feature of the two robustness-focused training algorithms is their dependence on the 
choice of the neighborhood size 𝜀. Neither paper offers useful guidance on how to choose 𝜀. This is not 
surprising, as this choice will depend on the particular application domain; in some cases, it may not 
be advantageous to have 𝜀 that is too large. This points to a general observation that all robustness 
analysis must be done in context of a particular application and its requirements. 
3.2.3 Testing of Robustness in Deep Learning Systems 
As discussed above, there have been promising advances in training for limited robustness for 
specialized network architectures. For the widely popular multi-layer deep learning case, the literature 
focuses on testing to ascertain robustness. Below we review a few relevant examples.  
Pei, et al.44 define the neuron coverage criterion as the ratio Na / N, where Na is the number of neurons 
activated by a test set, and N is the number of neurons in the entire network. The testing process is 
then defined as an optimization problem that maximizes neuron coverage by leveraging the fact that 
neural networks are trained using gradient descent, and thus the search for test inputs that yield 
different paths through a program may be guided by gradient ascent since all weights are known after 
training. 
Tian, et al.45 extended the neuron coverage testing method to also include convolutional layers and 
recurrent networks. The paper raises concern that inputs generated in Pei may not be realistic enough, 
and thus focuses on test generation techniques that produce more realistic inputs. They focus on real-
world input variability phenomena related to autonomous driving such as camera lens distortion, 
weather conditions, and object movement. They also acknowledge that many applications of deep 
learning lack detailed specifications, which is an essential ingredient in verification activities. To avoid 
this issue, they leverage metamorphic relations between different synthetic images. For example, the 
steering angle of a self-driving car shall not be (significantly) affected by changes in weather conditions. 
The paper reports some examples where their Deep Test method discovered erroneous behavior in 
state-of-the-art neural networks trained for autonomous driving. 
The issue of coverage criteria is further addressed by Li, et al.46 The paper asserts that from the design 
point-of-view there are fundamental differences between deep neural networks trained using machine 
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learning, and software written by humans. Therefore, detecting erroneous behavior in neural networks 
is different from detecting those in traditional software, which necessitates novel test generation 
approaches. Still, the robustness determination should also investigate the consequences of “dead-
neurons areas” or otherwise inactive decision gates in a machine learning system. Observability of 
hidden nodes, covered in Section 3.3, also may have impact on robustness. More detailed 
understanding of why some nodes are activated and others are not may provide a means to improve 
the robustness of machine learning systems 
These three papers illustrate shortcomings of testing approaches available in literature. Each study 
defines its own coverage criteria and provides some comparisons to others. However, research on 
hierarchies of these criteria is missing, and connection to previously existing criteria such as decision 
coverage is insufficient. Li, et al. claim that existing coverage criteria such as branch coverage 
completely lose effectiveness when applied to deep neural networks, however without any evidence to 
substantiate that claim. Pei et al. compare neuron coverage with code coverage of a neural network 
execution engine while running tests cases. This type of code coverage is not sufficient, as it is 
analogous to measuring the coverage of a hypervisor to assess the quality of each isolated operating 
system.  
The papers reviewed above provide strategies to generate test inputs and demonstrate that it is easy 
to come up with examples that violate the intended behavior of neural networks. The lack of detailed 
specification (and thus a testing oracle) still seems to be an open research topic. 
3.2.4 Summary Observations and Research Needs 
The concept of machine learning robustness is tightly linked to the notion of continuity and 
boundedness of gain, for regression networks, and with local lack of sensitivity, for classifiers. In the 
latter case there is a fundamental tradeoff between local robustness and the need for accurate 
discrimination between different classes: the more robust a network is, the less sensitive it will be with 
respect to discriminating features. The most popular approach to define and analyze robustness is via 
specifying the size ε of adversarial neighborhoods. The larger those neighborhoods, the less 
responsive the network will be. Thus, training for robustness requires intimate knowledge and 
understanding of the application domain requirements.  
There is a tradeoff apparent in the available literature between the complexity of network architecture 
and the available training apparatus to improve (not even assure) robustness. For piece-wise linear 
(ReLU) and single hidden layer architectures, attractive robustness-focused algorithms have been 
proposed. For the more popular and more versatile multi-layer deep learning architectures, the 
literature focuses merely on verifying or testing for robustness. There seems to be a need for 
robustness-focused deep learning methods. 
Robustness is also tightly linked with the detection (or non-detection) of characteristics or properties in 
a classifier that are not easily quantifiable, but are crucial for classification. For example, how many 
wheels or legs can be “seen”? This automated kind of data processing is something that humans 
perform without even noticing, which provides robustness to adversarial attacks as illustrated in the 
images above. Such properties would be instantly recognized by a mammal brains but are still 
challenging to mimic within machine learning. This phenomenon reflects the existing difficulty of tracing 
high level requirements to a more granular understanding of the operation of machine learning systems. 
Improvements in this area will help with the introduction of machine learning elements in certifiable 
aerospace systems. 
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Currently available techniques are academic and scalability to real-world problems remains an issue. 
Rapid adoption of machine learning technologies in aerospace systems will require detailed 
considerations of the robustness of these systems, and more importantly the impact of the lack of 
verifiable robustness on the safety of the system in all foreseeable operating conditions. Such systems 
may operate well in advisory functions, but additional research is required before robustness can be 
assured for safety-critical systems. 

3.3 Observability and Interpretability 
While machine learned models have shown impressive results in a wide range of problem domains 
from image classification, object identification and tracking, motion planning and control such as those 
present in self-driving cars, and natural language processing, most techniques are inherently black box 
in nature. While access to the internal structure of a machine learned model (i.e. the weights of a neural 
network, for example) is readily available, it can be difficult to interpret the emergent logic of such 
systems. These limitations and non-intuitive traceability (particularly from the perspective of current 
traceability practices) makes certification of data-based ML within safety-critical systems an open 
challenge. 
The following subsection and associated appendix provide an overview and discussion into the current 
state of AI Interpretability. Specifically, this section aims to provide rationale for the importance of such 
techniques and clarity regarding terminology. Additionally, a high-level technical explanation and 
relevant use cases are provided within the Appendix. The intent is to shed light on potential applications 
of AI Interpretability within aviation, based on current usage of such techniques in similar domains like 
the automotive industry. 
3.3.1 Relevance of Interpretability Techniques 
There are a number of reasons for increased attention, research and incorporation of interpretable AI 
techniques. While research into interpretable AI is nascent, initial insights generated provide promising 
results for the future. Below is a list of potential benefits from developing interpretable systems: 

• Support for evidence-based certification: Such techniques could provide support for 
evidence-based certification via human-like communication of competency or generating 
rationale for decisions. Interpretable AI techniques are already being utilized by the automotive 
industry during development to provide visual evidence of navigation decision making in self-
driving cars.47 More research, development and assurance on interpretability is still needed, 
particularly as methods for enabling machine learning and especially deep learning models to 
be more interpretable are unsatisfying for those accustomed to hard constraints and provable 
bounds on system operation. The expanding collection of methods for explainable insights are 
primarily heuristic, enabling the developer to test hypotheses about the model’s performance, 
but not to extract hard rules and closed form expressions.  

• Aid in human machine teaming: through more robust communication between human and 
artificial intelligence. While full automation is an exciting goal within some industry tasks, it is 
likely that AI will also be highly prevalent as a mechanism for assisting human decision making 
and control. In such cases, it will be increasingly important for AI to appropriately communicate 
and transition control bi-directionally with a human as appropriate. 
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• Engendering Trust: Engendering and maintain trust within users requires enhanced 
communication (visual, textual, vocal, etc.) and by recognizing and addressing mistakes in a 
timely fashion. By way of example, a previous study looked at the effects of trust on humans 
with a robot guide providing assistance to the nearest emergency exits. Through the study, it 
was shown that as intuited, when a robot made navigation errors human trust was degraded and 
usage was reduced.48 Yet, when the robot appropriately explained the reason it failed or 
apologized for the failure with a properly timed response, the subject’s trust was repaired.49  

• Avoiding latent biases and unintended side effects on predictions through inadequate training 
data. Accuracy of an underlying ML model does not guarantee appropriate predictions. 
Specifically, a high prediction rate may result from quality and bias issues of the training data. In 
the military trained a classifier to recognize enemy tanks from friendly tanks.50 The classifier 
resulted in a high accuracy on the test set, but poor performance when deployed in the field. It 
was later discovered the ML model utilized unintended features (non-tank related) in the dataset 
to classify images. Enemy photos were taken on overcast days, while friendly photos on sunny 
days. 

• Enhancing effectiveness of black box techniques by pointing to evidence for specific 
predictions/outcomes. By exposing the black box systems, researchers can start to spot pitfalls 
within model’s internal logic earlier in the development process, and subsequently construct 
strategies that address the undesirable.  

AI Interpretability will certainly become an increasing requirement preceding deployment of machine 
learned systems. The European Parliament recently adopted the General Data Protection Regulation 
(GDPR), which became law in May 2018.51 “An innovative aspect of the GDPR…are the clauses on 
automated (algorithmic) individual decision-making, including profiling, which for the first time 
introduce…a right of explanation for all individuals to obtain ‘meaningful explanations of the logic 
involved’ when automated decision making takes place.”  
3.3.2 Use Cases for Aviation 
As an example, AI interpretable techniques could be utilized by both end users and system designers 
within the aviation industry. Such techniques could one day be used to interpret model decisions and 
provide explanation during autonomous taxiing, or provide textual or vocal responses during off nominal 
situations within the cockpit, while simultaneously pointing to evidence/data as justification for 
recommended course of actions. Additionally, interpretable AI techniques could help algorithm 
developers understand and identify the causal features generating diagnosis related to predictive 
maintenance applications. 

 
48  Robinette, P., Howard, A., and Wagner, A. "Timing is Key for Robot Trust Repair," Proceedings for 7th 
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Springer. https://sites.psu.edu/real/files/2016/08/Trust_Repair_ICSR-Submitted-1sl4k5h.pdf and 
https://www.sciencedirect.com/science/article/pii/S1367578814000406, retrieved on July 31, 2019. 

49  Lyons, J., et al., “Certifiable Trust in Autonomous Systems: Making the Intractable Tangible”, Artificial 
Intelligence Magazine, 38, (3), pp. 37-49, https://www.aaai.org/ojs/index.php/aimagazine/issue/view/219, 
retrieved May 21, 2019. 
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3.4 Research Summary - Safety Systems Using Machine Learning 
During the course of this project, two types of literature searches were conducted: 1) an ad hoc search 
conducted by the members of the PMC and the sub teams formed during the course of the project, and 
2) a formal search conducted using defined search criteria and the reference library resources of the 
Texas A&M University. Both searches revealed extensive literature in the general area of machine 
learning algorithms and methods. There are relatively fewer papers on application of machine learning 
in safety-critical applications, however, new papers are emerging as especially the automobile and 
aerospace industries consider adoption of machine learning methodologies.  
The project team reviewed what similar industrial domains are doing with “certification” of these cyber-
physical systems, citing the automotive industry, the medical industry, and the nuclear industry – all 
domains with strong interest in certification of safety-critical systems. There is a gap in coverage of 
verification and validation aspects of machine learning approaches and algorithms; there is an apparent 
dearth of research in these areas. 
In conducting the literature search, the project team took a systematic three-step approach as shown 
in Figure 11. 

 
Figure 11: Literature search process.52 

Both the ad hoc and formal searches conducted by this project team focused on those papers 
applicable to safety-critical applications. Over 150 papers were reviewed for relevance by team 
members. A full listing of the references is provided in a separate indexed spreadsheet that can be 
obtained from the AVSI project archives. Contact AVSI at https://avsi.aero. 
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4 Machine Learning Process Flow for Safety-Critical Applications 
4.1 Introduction 
This section of the document describes what project members expect would be a representative life 
cycle for development of an ML-based system. It is intended to serve as a starting point for further 
discussion, detailing or change. The process flow also suggests minimum criteria for some of the 
proposed activities. 
4.1.1 ML Development Life Cycle Process 
The Machine Learning Life Cycle process may be described as consisting of the following activities: 

1. Define a set of requirements that describe what is to be implemented, the desired behaviors, 
performance and acceptable margins of error. 

2. Develop and manage with rigorous configuration control the datasets to be used to train the ML 
subsystem, based on the data types defined by system input requirements. These datasets will 
be broken into three separate categories:  

a. training – the chosen machine learning topologies must be trained to establish 
parametric values for all nodes and connections,  

b. test – used to check if the trained topologies behave as expected with data previously 
not seen, and  

c. verification – used to verify the behavior of the executable code once it has been 
integrated into the target platform/system. 

3. Provide a set of possible paradigms [Support Vector Machines (SVM), Neural Networks, etc.] 
eligible to solve the problem at hand, as presented by the set of requirements. 

4. Select from the possible paradigms, the most applicable candidate for the problem at hand. 
5. Select from the chosen paradigm the topologies that represent a solution that complies with the 

requirements. Training is performed by injecting training data on selected topologies. 
Modify/Update topologies as needed to comply with the set of requirements, based on the 
training data. 

6. Requirements, such as accuracy, error margin and performance, should be used to select the 
best topology. Prune the ML algorithm to remove unnecessary nodes. 

7. Inject test data on the trained model to guarantee that the design still complies with the set of 
requirements. This step is intended to validate that the selected topology still behaves as 
expected once exposed to new data. 

8. Generate source and executable code from the trained model and integrate it into the target 
hardware. 

9. Inject validation data in the target hardware to measure the level of compliance of the executable 
code with the data that represents a set of requirements. 

Figure 12 illustrates the relationship between these expected activities. 
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Figure 12: Machine learning development flow. 

4.1.2 Requirements 
Requirements may be developed as they are for any other given technology. They may be represented 
as text, as mathematical or logic expressions or as a model, for instance. However, it should be noted 
that ML-based systems might also require that some unique criteria be specified. Suggested unique 
criteria are listed below. 

• Behavior - Concerns the operational envelope of the machine learning system and its 
robustness to foreseen and unforeseen inputs. The possible actions a machine learning system 
can perform, the constraints on those actions, and the internal and external data affecting system 
outputs and performance, need to be understood. 

• Training Process - Concerns the software pipeline and methodologies for optimizing the 
machine learning system. The training process needs to consider the operational environment, 
type of data, quality of data, structure of data, machine learning model, the optimization methods, 
and metrics used to measure success of training. Training of a machine learning system is 
typically a continual process. Therefore, it is important to determine how models will be further 
optimized by new data, as well as understand how training on the new data may affect prior 
performance and robustness. Further, the 'stop criteria' for training needs to be considered. Stop 
criteria concludes the training process as appropriate for the given application in order to avoid 
over-fitting. It may consider performance thresholds, degradation of performance and runtime 
behaviors. 

• Performance Metrics - As machine learning models are optimized against their respective loss 
functions, the performance of a model is expected to improve. Machine learning models are 
typically benchmarked via accuracy (supervised learning) and accrued reward or performance 
against operational goals (reinforcement learning), to name a few. Performance metrics need to 
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be accessed throughout the lifecycle of the system from training to deployment, particularly as 
performance can vary between simulated and/or training data to the real world environment.  

• System Inputs - Concerns the data provided as input into the machine learning model ultimately 
used to make a prediction or perform an action. Considerations for the data utilized as inputs 
include: data format/type, methods for accruing/capturing data, the intended operational 
environment, differences in data between the training versus operational environment, and 
process for separating training, validation and test datasets. System inputs can be further used 
to inform safeguards against adversarial modifications to the data.  

• System Outputs - Concerns the actions or predictions provided by a machine learning model 
based on the inputs received. The output interface needs to be well defined such that the range 
of outputs, format of outputs, and acceptable rate of errors is understood. 

4.2 Process Flow – Machine Learning as a Design Aid 
In certain applications, such as control loop optimization and tuning, machine learning methods may 
be used as a design aid during development. When machine learning is used only as a design aid, the 
machine learning algorithms provide the fixed design parameters used in a conventional 
implementation. Since the machine learning algorithms are not part of the runtime end system, the 
safety concerns are minimized: the runtime implementation can be verified and validated using 
accepted verification, and validation processes to assure the end system meets its safety objectives.   
For example, tuning of the feedback loops used in complex flight control to achieve optimal performance 
can be a time-consuming design activity using a combination of simulation, lab, and flight test results 
to balance all of the feedback parameters to optimally meet the performance requirements. Re-applying 
that control system to a modified or new platform often means repeating that same time-consuming 
optimization process. In some cases, it is expected machine learning may be a useful and efficient 
means to optimize parameters. Once the machine learning has determined the optimized parameters, 
those parameters can be fixed in the implementation and verified and validated according to 
conventional methods (for example, gain and phase margins, impulse response, etc.). 

4.3 Process Flow – Fixed Runtime Parameters 
This is expected to be the most frequently used process flow for initial application of machine learning 
functions in safety-critical systems. It is similar to the development life cycle and system deployment of 
traditional non-ML systems in that a design is “fixed” once the system is deployed in a certified 
application. For a system with embedded machine learning, this means all the training is completed 
during the design phase. Runtime learning is not permitted once a system is certified for use (see the 
next section for a discussion of runtime learning processes). 
As an example, consider a safety-critical system that uses an artificial neural net in its implementation. 
The ANN would be designed, trained, tested, and implemented as described in 4.1.1. The ANN 
topology, weights, and biases would then be fixed and under configuration control. As shown in Figure 
13, the implementation will be verified, integrated, and validated and then deployed to the field with 
those fixed parameters. Runtime changes to the ANN topology and parameters must be disabled to 
prevent changes and loss of configuration control. 
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Figure 13: Process flow: runtime fixed parameters. 

4.4 Process Flow – In Service Updates 
Machine learning algorithms can have the ability to learn from runtime experiences, modifying future 
behavior on the basis of the continued exposure to new situations and ongoing assessment of past 
performance. In some applications, this behavior is desired to achieve continually improving 
performance while in service. 
In safety-critical applications, however, any post-certification runtime modifications present challenges 
that must be addressed to assure continued air worthiness. These key issues include: 

• Loss of configuration control: safety-critical systems must be maintained under configuration 
control. 

• Emergent system behavior: any new emergent behavior must be assessed for its impact on 
continued safe operation. 

• Consistency of operation: consistent system behavior is important for training and standard 
operating procedures. 

• Unintended behavior: there must be guarantees that post-deployment learning cannot lead to 
unintended behavior or “mis-learning”. 

Until more field experience is gained with “fixed” machine learning processes, it is recommended that 
in-service modifications be re-certified prior to being deployed. This still allows in-service data to be 
used, but in a controlled fashion that ensures the safety objectives continue to be met with the updated 
system. 

 
Figure 14: Process flow: in service updates. 
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The recommended process is shown in Figure 14. Field data is collected and curated from the initially 
deployed system. The curated data is used to cycle back through the training and implementation 
processes. Once the retraining and implementation updates are complete, the “fixed” system is re-
verified, re-validated, and then re-deployed to the field.  

4.5 Machine Learning Datasets Considerations 
Datasets are the primary means for training and verifying a machine learning topology. Datasets may 
be created or may be based on recorded raw data. As discussed above, the dataset (Figure 12) is a 
key strand for the training, testing and verification steps for machine learning models. Dataset quality 
has a direct impact on the performance of the ML-based system. A poor quality or poorly managed 
dataset has the potential to make a machine learning model perform poorly and output behavior to vary 
unacceptably. 
Section 4.1 emphasizes the aspects of a curated dataset and its characteristics. However, in terms of 
the machine learning development process, datasets are closely related to system requirements in the 
sense that requirements capture expected input types, ranges, formats and tolerances for each type of 
input. Additionally, depending on the ANN being developed, datasets may include expected outputs for 
specific input data vectors. Expected errors should also be defined in requirements, since they may be 
used for robustness validation of the chosen topology. 
Datasets should be carefully verified in order to guarantee that they represent the whole range of 
expected operations. Data that is representative of only a subset of the foreseeable range of operations 
may lead to bias in the response of the selected topology, and therefore may lead to unexpected 
responses when the topology is subjected to inputs that are outside the range of data considered during 
development. 

 
Figure 15: Dataset segregation for machine learning models. 

Datasets which are based on raw recorded data may be prone to noise or missing information. It is up 
to the development team to decide on how this data is to be handled. For example, interpolation, mean 
values, or constant values may be used to fill gaps in data. The team might even decide to ignore 
certain recorded parameters entirely. It should also be noted that datasets may be refreshed through 
the data curation and configuration management process with new data in order to update this baseline 
data for training, validation and test purposes.  
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As illustrated in Figure 15, dataset segregation is used for three different purposes: 
• Training: used during the design process as a means to determine the weights and biases 

within a given topology that produce correct outputs for a given set of requirements.  

• Test: used during the design validation process, by submitting the chosen topology to new data 
and checking if it still behaves as expected according to requirements. 

• Verification: to verify that the software complies with its set of requirements after integration 
with the target hardware.  

Based on the discussion above, datasets may be subject to a minimum set of quality criteria in order 
to be considered sufficient for development of ML-based safety-critical systems. The criteria listed in 
Table 2 provide a potential basis for future standardized safety objectives useful for guiding 
development of systems built from ML datasets. 
 
 

Table 2: ML training/testing & verification data criteria. 

Data should be representative of the problem under analysis. 

Training and Verification Data should be representative of the domain usage.  

Data inputs should be verified against expected format. 

Data inputs should be verified for discrepancies in values or missing data. 

Data inputs should be checked for dependencies on other inputs. 
 

4.6 Design 
The design phase is composed of two sequential sub-phases: Selection of Applicable Paradigms and 
Selection of Applicable Topology. 

• Applicable Paradigms: Machine Learning encompasses multiple paradigms, each of which 
have particular strengths and weaknesses. The first step in the design phase is to determine 
which technique will best satisfy the set of requirements associated with the function being 
implement with the ML-based system. Selection criteria may need to be established and a 
rationale for the decision should be recorded for future reference. It is likely that selection of a 
specific paradigm will lead to a second level of derived requirements, since the choice of 
paradigm determines additional design details that need to be specified. 

• Topology: is the detailed structure of the type of ML paradigm chosen to solve the problem as 
expressed by the initial set of requirements. A trained model is an instantiation of a topology. 
The trained model is the source for generated source and executable code that can be integrated 
and verified on the target platform/system. It is up to the development team to decide how many 
different topologies should be analyzed before defining the best fit. Criteria used in selecting a 
topology include training rate, error margin, performance and other requirements. Once a final 
candidate is chosen, it must be validated with the segregated validation dataset. For example, if 
the selected topology is a neural network, it should have its weights and biases frozen, as well 
as the number of inputs for each level and the number of outputs defined for the last level.  
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Designers must verify that the chosen paradigm and topology comply with the set of functional and 
performance requirements defined for the ML-based system. 

4.7 Deployment 
While it is possible that a ML development does not result in a deployed system (see Section 4.2 for 
example), the deployment phase typically refers to activities required to embed a ML-based system in 
a safety-critical application. These might include the generation of source code, executable code, 
hardware acceleration, and integration in the target platform/system. These activities employ processes 
that are covered by existing standards such as RTCA DO-178C and RTCA DO-254, and as such are 
not within the scope of this document.  

4.8 Validation Process 
The validation process is used to guarantee that for each phase of the development life cycle, the ML-
based system is still performing it’s intended function. Figure 16 illustrates the flow and relationship 
between validation activities and artifacts. 
The following elements of the ML model are subject to validation: 

1. Requirements – as defined in the usual sense and subject to validation activities such as those 
defined in SAE ARP4754A. 

2. Training/Test Data and Verification Data – In this case, these separate datasets need to be 
validated in terms of data types, data inputs and their formats, comply with requirements, and if 
there are any missing or discrepant data. Data may also be validated in the sense that they 
should be representative samples of the whole operational envelope that the topology will face. 

3. Selected Paradigms – Review of selected paradigms and the respective rationale for their 
selection. 

4. Selected Topology – Topology may be subject to both normal and robustness test cases by 
running scripts that will inject test data. Comparison against expected results will validate the 
solution in terms of performance, functional behavior and error margins as defined in the set of 
requirements. 

5. Implemented Solution – Verify implemented solution on target hardware against verification 
data. In this case, source code, executable code and integration may be subject to specific 
standards, such as RTCA DO-178C tables A-5, A6 and A7. 



 

 © 2020 Aerospace Vehicle Systems Institute 38 

 
Figure 16: Machine learning validation. 

4.8.1 Validation Artifacts 
The following artifacts may be generated for the activities presented in Figure 16: 

• The Validation and Verification of Requirements activity produces a baseline recorded as a 
Verification and Validation Report. 

• The Review of Baselined Training and Test Data activity produces a Review Record & 
Traceability to Requirements Baseline Report. 

• The Review of Paradigms and Respective Rationale activity produces a Review Record & 
Traceability to Requirements Report, 

• The Review and Analysis of Baselined Topology activity produces a Review and Analysis Report 
& Traceability to Requirements and Paradigms Report,  

• The Review of Baselined Verification Data activity produces a Review Record & Traceability to 
Requirements Baseline Report, 

• The Review and Analysis of Verification performed on the baselined implemented solution 
produces a Verification Report and Traceability Report to the baseline set of requirements. 

• Testing produces various test reports. 
4.8.2 Configuration Control Process 
Configuration Control should be exercised throughout the ML development life cycle. Requirements, 
datasets, applicable paradigms and selected topologies should be subject of configuration control as 
shown in Figure 20. 
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Figure 17: Configuration control. 

4.8.3 Quality Assurance Process 
Quality Assurance is an existing engineering process that applies equally to ML-based system 
development. As such, it should be actively applied throughout the entire development life cycle in 
order to guarantee that development processes are compliant with plans and adopted standards. 
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5 Perspectives on Assurance  
This section presents some perspectives on design assurance relevant to the development of ML-
based systems. It is intended to integrate some of the lessons learned during this project within a 
broader discussion of design assurance of complex systems. To set the framework for the discussion, 
a summary of current assurance practices is briefly summarized below. 

5.1 Current Practice 
The current aerospace development approach is largely guided by documents published by SAE 
International and RTCA, Inc. At the system level, SAE recommended practice ARP4754A – Guidelines 
for Development of Civil Aircraft and Systems covers the complete aircraft development cycle. The 
guidance places a strong emphasis on safety, requirements definition, validation, and architectural 
justification. ARP4754A classifies hazards into five levels A through E defined by the criticality of the 
hazard, with level A denoting catastrophic hazards, and level E denoting hazards with no safety impact. 
A complementary document, ARP4761 – Guidelines and Methods for Conducting the Safety 
Assessment Process on Civil Airborne Systems and Equipment, describes hazard and safety analysis 
processes where hazards are identified and assigned criticality levels via a functional analysis process, 
the result of which allocates a Function Development Assurance Level (FDAL) to each function. The 
FDAL provides the basis for the rigor of the development assurance processes in accordance with the 
criticality of the hazard. ARP4754A also recommends that architectural mitigation strategies be 
deployed to mitigate failure conditions which may contribute to hazards. Depending on the architectural 
mitigation and redundancy configuration, each of the hardware and software items that implement the 
architecture is an assigned an Item Development Assurance Level (IDAL). Similar to FDAL, IDAL 
designates five assurance levels A through E. The IDAL determines the rigor of the hardware and 
software item-level implementation development assurance processes. These processes are 
prescribed by guidance under RTCA in the form of DO-178C (for software items) and DO-254 (for 
hardware items).  
The item guidance documents outline processes that assure the correct implementation of the 
respective hardware or software item. Hence, both processes assume validated requirements are 
developed through the system development process. The foundation of both the hardware and software 
item assurance processes is requirements driven design assurance. This mandates a high degree of 
design transparency and structural mapping to the driving requirements. Under DO-254, elemental 
analysis is used to demonstrate that each part of the design relates to the implementation of a 
requirement. Similarly, structural coverage analysis performed under DO-178C addresses the same 
objective for software designs. It is this combination of requirement driven verification with white box 
structural design transparency that provides the foundation for the dual claims of correct functional 
implementation and implementation of only the intended functions. 
5.1.1 Safety Assessment and Assumptions Related to Software Reliability  
As described above, ARP4761 supports ARP4754A objectives with specific recommended practice 
relative to the safety assessment processes. This document provides more detailed guidance on how 
to conduct the functional hazard analysis and preliminary and final safety assessments. The 
recommended practice draws from broadly accepted methods including Fault Tree Analysis (FTA), 
Failure Modes and Effects Analysis (FMEA), Common Cause Analysis (CCA), Zonal Safety Analysis 
(ZSA), and Common Mode Analysis (CMA).  
 
Within the safety assessment processes, the assessment of the software contribution to safety is made 
on a purely qualitative basis. There is no quantitative accounting concerning software reliability. There 
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is, therefore, an implicit underlying assumption that the assigned IDAL, together with the respective 
development assurance processes that it drives, provide sufficient confidence to preclude a software 
design error from contributing to the functional hazards. 

5.2 The Disruptive Nature of Machine Learning Implementations 
Machine learning technologies disrupt the current assurance paradigm in two important ways. First, 
traditionally defined and allocated requirements are replaced by requirements represented by datasets. 
Secondly, traditional tools and processes used to analyze and develop a structural understanding of a 
system design are not well suited to the emergent behavior of ML systems. 
The traditional system to item requirement flow down is replaced with requirements that are empirically 
encoded with training and datasets. This issue with ML technologies is disruptive to the current 
assurance paradigm in two ways. The first relates to the challenge of the specification itself. As 
Spanfelner points out, the functionality of ML/AI components may involve the perception of the 
environment, which is not entirely specifiable.53 For example, what is the specification for recognizing 
a pedestrian or a car? A second challenge relates to the gap and sensitivity differences between human 
and machine interpretation of sensory datasets. This gap is illustrated by the recent work that shows 
that slight variations in the input data, not perceivable by humans, can lead to degraded/incorrect 
performance of the machine learning system.54 Such issues may complicate and compromise human 
review, which is a cornerstone of the current item level design assurance processes, especially at 
higher DAL levels. 
Therefore, at today’s level of technology and industrial practice, a training set is not an adequate 
substitute for a specification. The training set may not be complete, and there is no guarantee that it is 
even representative of the space of possible inputs. While the data curation activities suggested earlier 
may go a long way helping to fill in this gap, more research is needed to establish a more formal line of 
evidence and justification. While one can infer the level of safety from a traditional system specification, 
the training set provides no guarantee about the (potentially infinite) set of input/output scenarios that 
the component can handle. Thus, a training set on its own may not be sufficient evidence for a safety 
argument. 
The structural complexity (or obscurity) and the emergent nature of the ML implementation behavior no 
longer support complete structural understanding of the design. Hence, it is difficult to trace functionality 
to elements of the architecture and ascertain whether functionality is limited to that which was intended.  
Research has shown progress in this area. Recent work applying formal methods to network verification 
shows promise. One such algorithm to verify the input/output behavior of a neural network presented 
by Katz et al. is Reluplex.27 It is a sound approach to verify safety properties of deep neural networks 
with ReLU activation functions. Intuitively, the algorithm is a modification of the simplex algorithm for 
solving linear programs. It operates by solving the linear constraints posed by the neural network’s 
weighted sums while attempting to satisfy the non-linear constraints posed by its activation functions. 
It has been successfully demonstrated using a family of deep neural networks designed to operate as 
controllers in the Airborne Collision Avoidance System (ACAS Xu). Further, Reluplex has been used to 
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evaluate techniques for finding and defending against adversarial learning.55 However, the NP-hard 
nature of the underlying problem of verifying ReLU NNs makes Reluplex work only on small networks, 
such as the ACAS Xu implementation that has five inputs, five outputs, and 300 total hidden neurons.  
However, given that this approach encodes the entire network, it is computationally infeasible for image-
based NNs that have significantly more inputs, outputs, and complex architectures. For instance, even 
the simple MNIST example may have 630,016 ReLU nodes.56  More recent advancements in this area 
are demonstrating some improvement. ReluVal was shown to perform up to 200 times faster than 
Reluplex and Neurify outperformed ReluVal by a factor of 20.57,58 However, the applicability of these 
techniques on real systems has not yet been demonstrated. Nevertheless, as such techniques evolve, 
they may form the foundation for a new class of authoritative guidance that may guide machine learning 
certification.  

5.3 Characterizing the Disruption 
From the discussion above, it is evident that ML-based implementations remove the foundation of the 
current design assurance paradigm at the item level. A redistribution of confidence may best 
characterize the impact of this. For traditional, imperative software, existing item level assurance 
techniques have proven to be very effective at limiting design errors. Thus, the qualitative-only 
treatment of software within the system safety processes is arguably justified. However, at the current 
state of practice, techniques to argue an equivalent level of confidence within ML-based 
implementations are not available. Such applications may be considered to be black box software, and 
as argued by Butler et al.,59 it is practically infeasible to achieve the level of confidence needed for 
safety-critical applications by test alone. Hence, additional research must occur to address this gap. 
The reduction in confidence concerning guaranteed correct software behavior has additional impact 
above the item level. As discussed above, under ARP4754A architectural mitigations are justified within 
a context of the IDAL allocations to the implementation items.1 Redundancy is principally justified as 
an acceptable means to mitigate hardware failures. Under such assumptions, software-based 
functionality can be replicated on top of multiple independent hardware components to mitigate 
common mode hardware failures for improved function availability and integrity. Once again, this was 
primarily supported by the underlying philosophy that the item assurance processes were “good 
enough.” This assumption may not hold if confidence in the correct software behavior is reduced. 
Hence, software replication and redundancy strategies may need to be adapted for ML-based systems.  
Some of the architectural mitigation strategies discussed in this document may present some avenues 
for exploration, for example, the mix of machine learning implementations with traditionally 
implemented safety monitors. However, the analysis of the safe reversionary state or backup mode will 
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need meticulous attention. Any reduced or simplified functionality will need to be demonstrated to be 
sufficient for all anticipated operational scenarios. The cost impact of supporting adequate capability 
within the backup and monitoring system will also be a consideration. Furthermore, if the backup system 
and monitoring system form the basis of the system safety justification, issues of fault coverage, latent 
fault scrubbing, and the hardware level of redundancy required within the backup system will also need 
careful treatment and consideration. 
Given the above discussion, it may be argued that the current prescriptive guidance is necessary but 
insufficient for machine learning based applications. It is still applicable, and any software or hardware 
implementation of machine learning should meet the intent of the current standards. But this guidance 
is insufficient to accommodate the emergent and structural complexity of typical machine learning 
implementations. Hence, some augmentation is required. 

5.4 A Path Forward 
In 2014, Mike Dewalt, who was the FAA Chief Scientific and Technical Advisor for Aircraft Computer 
Software at that time, proposed a new Technology Independent Assurance Method (TIAM) as a 
potentially less prescriptive certification framework.60 This work laid the foundation for a new FAA 
initiative called the Overarching Properties, that is attempting to develop additional guidance for such 
an approach.61 Given that the current prescriptive guidance is insufficient, these new approaches may 
be applicable to accommodate the complexities of machine learning-based implementations. Machine 
learning certification may indeed be a great test case to assess the applicability of this emerging 
guidance paradigm. The Overarching Properties approach requires that an applicant for certification 
must demonstrate that their system meets acceptable criteria for the following basic properties:  

1. Intent – The defined intended behavior is correct and complete with respect to the desired 
behavior.  

2. Correctness – The implementation is correct with respect to its defined intended behavior 
under foreseeable operating conditions. 

3. Innocuity (previously termed acceptability) – Any part of the implementation that is not 
required by the defined intended behavior has no unacceptable safety impact. 

From the prior discussion, these properties appear to be equally applicable and very salient to the 
challenges of machine learning certification. However, the difficulty of arguing intent (the requirements 
are correct and sufficiently complete), correctness (the implementation will always perform as 
expected) and innocuity (the implementation is limited to intended functionality) does not decrease, 
though the method of justification may differ. 
A related European research program (Re-Engineering and Streamlining Standards for Avionics 
Certification or “RESSAC”) completed in late 2017.62 A goal of the RESSAC project was to assess the 
feasibility of an Overarching Property-based certification paradigm. The research team concluded that 
an assurance/safety case approach might be the most effective manner to support such a paradigm. 

 
60  DeWalt, M., and McCormick, G., "Technology Independent Assurance Method," 2014 IEEE/AIAA 33rd 

Digital Avionics Systems Conference (DASC), IEEE, 2014, https://ieeexplore.ieee.org/document/6979529, 
retrieved June 22, 2019. 

61  Holloway, C., “Understanding the Overarching Properties: First Steps,” September 2018 Draft, 
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/TC_Overarching.pdf, retrieved 
June 22, 2019. 

62  Brown, D., “An Alternative Approach to DO 178B,” in High Integrity Software conference, 2017, 
https://www.slideshare.net/AdaCore/an-alternative-approach-to-do178b, retrieved June 23, 2019. 
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However, one challenge with the safety case approach is the justification of confidence. As illustrated 
by the work of Graydon and Holloway,63 industry still lacks an accepted credible method to argue 
confidence claims. The lack of such foundational theory may eventually pace the insertion of new non-
traditional technologies such as machine learning applications. Further research is therefore needed to 
understand how such confidence claims can be built and justified. 

 
63  Graydon, P. and Holloway, C., “An Investigation of Proposed Techniques for Quantifying Confidence in 

Assurance Arguments," NASA/TM–2016–219195, Safety science 92 (2017): 53-65. 
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160006526.pdf, retrieved June 23, 2019. 
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6 Considerations for Bounding the Behavior of ML Algorithms  
6.1 Runtime Assurance Architectures  
6.1.1 Runtime Assurance Definition 
Runtime Assurance (RTA) may be described as the ability to ensure the safe operation of a system 
that contains functional components, which may not be sufficiently reliable or verified, according to 
current development or certification standards. RTA applies runtime verification to ensure that the 
system does not take unsafe actions. It steers the system into a safe state when anomalous behavior 
is detected. An RTA architecture has a monitor that can monitor critical safety states of functional 
components that may not be reliable or thoroughly verified and can switch to a reversionary system 
when an unsafe condition is approaching or has occurred. Unlike the functions which are being 
monitored, the monitor(s) and the reversionary system can be developed using existing developments 
standards such as RTCA DO 178C and RTCA DO 254. Figure 18 illustrates a typical runtime assurance 
architecture. 

 
Figure 18: Typical runtime assurance architecture.64 

In Figure 18, monitoring is an architectural mitigation against unsafe behavior of the complex function. 
This type of monitoring can be defined as “system level monitoring.” It is also possible to define specific 
monitoring directly linked with the machine learning architecture and behavior. These two types of 
monitoring are described in the next paragraph.  

 
64  Hook, L.R., Skoog, M., Garland, M., Ryan, W., Sizoo, D., & Vanhoudt, J. (2018). Initial Considerations of a 

Multi-layered Run-time Assurance Approach to Enable Unpiloted Aircraft. 2018 IEEE Aerospace 
Conference, 1-11. 
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6.1.2 Reference Architectures 
6.1.2.1 Simplex vs. Complex System-Level Monitor 
The objective of system-level monitor is to define and to monitor a safe boundary of the system, 
regardless of machine learning implementation (same architecture as today when a system is 
monitored by an independent one). If the system-level monitor detects a potential safety issue for the 
system, the system-level monitor is able to inhibit the System Based on Machine Learning (SBML) and 
to continue in a safe mode (with or without aircraft limitations). This type of runtime monitor is efficient 
only if the aircraft function is feasible with “usual” avionics inputs/outputs. In this case, the machine 
learning system is used to improve efficiency or accuracy of the system but the system-level monitor is 
always able to check that the SBML stays in the system safe area. The system level monitor can be 
represented as in Figure 19. 
It is important to maintain suitable segregation and independence of the monitor and backup functions, 
including sensors, interfaces, power, computing resources, etc. The architecture should prevent failures 
of the SBML components from propagating to or affecting the System Level Monitor and Backup 
channels. The architecture should ensure the selection switch is controlled by the trusted RTA 
components. 

 
Figure 19: System level monitor. 

A variant of this architecture is to use same physical outputs between the two systems. In this case, 
the runtime monitor is able to validate the outputs of the SBML before sending the order to the aircraft.  
Nevertheless, the aerospace community would like to introduce SBML to develop new functions for 
more aircraft safety and efficiency. These new functions offered by machine learning technology are 
not feasible with current classic technology making it very difficult to use of system-level monitoring. In 
this case, tightly coupled runtime monitor could be used as explained in the next paragraph. 
6.1.2.2 Tightly Coupled Runtime Monitor 
A tightly coupled runtime monitor is a mechanism able to observe internal data of a system, and to 
execute dynamic verification in order to detect erroneous behavior of the system. As shown in Figure 
20, the dynamic verification can be done by comparing the extracted data with data from a reference 
model, specification, or from previous recording during the system definition phase. 
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Figure 20: Reference model based assurance. 

Cassar, et al. detail different techniques for runtime monitors, along with associated tools. The paper 
identifies a large spectrum of techniques:65 

• More intrusive (completely-synchronous or “CS”), where each step of the system is verified 
before the execution of the next step. This technique might potentially impact the processing 
power needed to avoid system slow down. 

• Less intrusive (completely-asynchronous or “CA”), where verification is done as a background 
task. This technique has the drawback of an increase in the time to detect an error. 

• Intermediate techniques such as Synchronous Monitoring with Synchronous Instrumentation 
(SMSI), Asynchronous Monitoring with Checkpoints (AMC), and Asynchronous Monitoring with 
Synchronous Detections (AMSD). 

Implementing these types of runtime monitors depends on the ability to identify: 
• system properties that must be monitored in order to maintain system behavior within safe 

boundaries, and 

• data in the system implementation that are representative of these properties. 
The difficulty of this identification depends on the complexity of the system and the type of machine 
learning algorithm. 

6.2 Runtime Monitor Functions and Operations 
Formal verification of software where programs written in semantically well-defined languages can be 
mathematically proved to satisfy a logical statement specification is an established area of research in 
computer science that increasingly is being used in industry. Runtime Verification (RV), where 
specifications are checked for satisfaction at runtime can greatly increase our confidence that the 
machine learning application is doing what it is supposed to do or at least not doing something harmful. 
Like testing, RV cannot prove the absence of an error, but unlike testing, it can direct mitigating actions 

 
65  Cassar, I., et al., “A Survey of Runtime Monitoring Instrumentation Techniques,” EPTCS 254, 2017, pp. 

15-28, https://arxiv.org/abs/1708.07229, retrieved June 23, 2019. 
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to be performed when an error is detected. Table 3 provides definitions for some of the terminology use 
in RV. 

Table 3: Definitions of some runtime verification terminology. 

Specification The logical definition of a correctness property. 

Observability Ability of system state to be observed during execution. 

System under observation The software/system on which runtime verification is performed. 

Instrumentation  Specific software/hardware that enable the monitor to observe the system.   

Trace An execution trace of the observed system. 

Monitor System module that runs during execution and determines if a given trace 
violates a given specification. 

Runtime Verification Framework  
An RV function that, given a logical specification and possibly additional details 
about the system under observation, generates executable monitors including 
the instrumentation. 

Steering problem What to do when a specification is violated. 

 
Specifications are mathematically precise statements of the properties that the system must satisfy. In 
particular, a specification must be written as a formal statement in some well-defined logic having a 
formal syntax and semantics (model theory). Logics that are popular for writing formal specifications 
include first order, higher-order logic (HOL) theorem provers (like PVS, Coq, Isabelle, HOL4, etc.), 
modal logics, temporal logics, stochastic logics, etc. The sort of mathematical models that engineers in 
aerospace are familiar with can be translated into formal specifications. Expertise with the specification 
formalism is usually required in order to write correct and effective specifications. The formal nature of 
the specification can be invaluable because it allows one to not only precisely formulate tests, but to 
mathematically prove properties about the specification. Yet, validation of the specifications remains 
essential to ensure the properties specified are the desired ones.  
In general, the literature classifies specifications as one of the following three types of properties: 

• Functional correctness – for each input it produces the expected output. For instance, for a 
library implementation of quicksort the specification may say given an input sequence 𝑥, the 
output 𝑦 is a permutation of 𝑥 sorted by some ordering relation. Probabilistic and randomized 
algorithms have specifications with a probabilistic component. 

• Safety property – says “something bad will never happen.” This is usually defined in terms of 
unsafe regions of the state space. 

• Liveness – the system makes progress. This is important in concurrency where processes may 
have to take turns executing critical sections of code. 

Safety properties are often easier to check at runtime than functional correctness and most of the RV 
literature focuses on safety properties. Unfortunately, any piece of code that “checks for something” is 
often called a monitor. In RV, the term “monitor” means an executable realization of a formal 
specification. RV frameworks translate a logical specification into an executable monitor. The need to 
translate a logical specification into an executable monitor can restrict the choice of specification logics. 
For instance, there are well known algorithms for translating linear temporal logic (LTL) into efficient 
automata.  
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In RV, one can only speak about “correctness” in terms of a trace of the evolving system state and 
whether this trace satisfies the given specification. That is a specification defines a property of the trace. 
For a completely synchronous RV monitor, the trace may include internal state changes of the system 
under observation as well as streams of sensor data where for completely asynchronous RV monitor, 
a trace may only contain sensor data as the sensor data is part of the state of the evolving system. 
Technically speaking, given a specification of correct behavior 𝜑 and an execution trace 𝜏, one can 
think of RV as checking for language inclusion 𝜏 ∈ 𝐿(𝜑). You can only write specifications enforcing 
properties on information included in a trace. Consequently, one must think about the trace when 
selecting a specification logic as well as when writing properties. This means that the instrumentation 
must be as intrusive as needed to provide the desired trace.  
There are two general philosophies that are adopted in the RV community. The more intrusive approach 
monitors every state change. This allows one to know that some property is NEVER violated, but the 
executable must be instrumented so that every state change/assignment statement has some code to 
record the change in the trace. A lot of work has been done on the engineering behind this, especially 
for Java where specialized Java Virtual Machines can be built to support capturing trace information. A 
second approach is sampling where the state of execution is sampled at specific intervals. For hard 
real-time systems in particular, one can schedule the sampling in intelligent ways by scheduling when 
the monitor is executed. While sampling can miss some errors, it is often sufficient for physical systems. 
Thus, if one does not understand the trace, one cannot understand if the specification is correct and 
cannot know what system instrumentation is needed. 
The issue of what to do when a monitor detects an error is known as the steering problem, as the RV 
system is expected to invoke software that “steers” the system into a safe state. The steering problem 
is difficult because it is application specific. In the classical Simplex architecture, there is some 
“conventional” control system to fall back on. In the case of satellites for example, there might be a well 
understood “safe mode” (point the antenna in a particular direction, reboot the system, and wait for 
instruction). In other systems, it might just be an alert to a human. This application-specific quality 
seems to have discouraged active research and publication in the area. 

6.3 Limitations of Using RTA Architectures 
Edsger Dijkstra’s famous maxim that testing can show the presence of bugs but cannot prove their 
absence holds for runtime verification as well.66 Formal proof techniques can show a program is correct 
for an infinite number of executions covering all possible execution paths, but runtime verification can 
only make assertions about the executions of the system seen thus far.  
In order to ensure that an RTA architecture provides sufficient protections, the RTA architecture needs 
to be engineered according to conventional safety-critical avionics techniques, even if the complex 
function being monitored is at a lower development assurance level. All the traditional requisite safety 
analyses and ensuing design considerations are needed to ensure that the RTA architecture functions 
as intended in all foreseen environments. For instance, the RTA architecture should be fault tolerant to 
some number of sensor failures and analysis may need to ensure that monitors are not basing decisions 
on faulty sensors. An RTA architecture that does not detect and mask sensor failure will not provide 
much protection against one of the most common hazards in avionics. Such levels of fault tolerance 
will likely require that an RTA architecture incorporate a combination of redundancy and independence 
from the system under observation.  
The RTA monitors (at system level) need a development assurance level appropriate to the failure 
classification of the function being monitored. For a complex, highly-coupled RTA architecture, such a 

 
66  See for example https://en.wikiquote.org/wiki/Edsger_W._Dijkstra  
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classical approach may not work. For example, consider a system where the backup channel is also 
the primary channel and the “complex function” is an enhanced or augmented capability (e.g., 
enhanced ride quality or fuel efficiency) that may have a lesser failure classification. In such a system, 
it must be shown that all failures of the complex function do not cause an unsafe situation, or are 
detected by the monitor and switched out. 
Can “safety” be defined in such a way that bounds the failure mechanisms? Degraded performance 
may be deemed “safe.” In other words, failover to a less capable backup channel may be safe, even if 
that backup channel is less capable. 
In general, there are two primary functions of interest: 1) what triggers the monitor, and 2) the backup 
function. Systems will likely have many monitors each triggering a particular steering action upon 
detecting an error. We know from experience that events often trigger many cockpit alarms and similarly 
one can easily foresee concurrently executing monitors simultaneously detecting errors and directing 
steering. Thorough analysis needs to be conducted to prove the absence of harmful interactions. 

6.4 RTA Architecture Use Cases  
Having discussed a few “general concepts” in RV, the following presents more specific considerations 
for applying RTA to machine learning.  
Consider as an illustrative use case an image classification system using a neural net for machine 
learning. If functional correctness is the property to be enforced, the corresponding specification may 
be something like “correctly classifies images 93% of the time,” but it is not clear how to formally express 
this as a property of an observable trace. Another option is to detect undesirable behavior of the overall 
system. Given the current state of the art, it is not clear if it can be sufficiently determined at runtime if 
something is misclassified. One might be tempted to run two or three “independent” ML approaches 
and perform voting, but it is not clear how to ensure the level of independence necessary for such an 
approach to work. On the other hand, assuming the classifier is part of an “intelligent” autopilot, then 
from a higher-level perspective we don’t care whether something is misclassified, only that the aircraft 
remains a “safe” distance from any object. This option can use well understood techniques, but doesn’t 
verify the learning. It just verifies that the ML system isn’t causing any bad effects. 
The necessary trace depends on the specification. The trace must at least capture the input to the 
classifier and the output in order to monitor that a classifier “correctly” classifies an image, but may also 
possibly need to capture some internal state. On the other hand, it is possible that only ADS-B and 
basic aircraft state information need to be captured in the trace to determine that safe distances are 
maintained from other aircraft.  
Whatever is being monitored, a “trace” of some kind will be needed. The choice of what trace to monitor 
needs to be well understood. The choice needs to be made based on the properties that need to be 
satisfied.  Applying this to this use case of an image classifier used for obstacle avoidance yields some 
representative questions: 

1. Is the trajectory the only concern, in which case detailed identification of the obstacle is not 
necessary? 

2. If the image classifier fails to even detect an object; is there a backup detector that can be relied 
upon? In this case, the runtime assurance argument is made at the system level that includes 
the backup detector. 

3. If the backup can reliably avoid the obstacle, what trace info is needed for post-event forensics 
to understand why the classifier missed the object? 

4. How are the image classifier properties expressed? 
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5. What statistically significant amount of test data is required if the monitored property is statistical 
in nature or if the property is expressed in a suitably complex logic? 

6. Can effective and efficient monitors be implemented for an image classifier? 
Similar questions can be posed for a variety of other use cases. These concerns must be carefully 
considered during system architecting, development, and certification to ensure the efficacy of the RTA 
and satisfy overall system safety requirements. 
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7 Summary of Recommendations 
7.1 Recommended Safety Objectives When Using ML in Safety-Critical 

Applications 
This section summarizes recommendations suggested in the body of this report.  The intent of this 
report is to provide aerospace industry stakeholders (certification authorities, ML-system developers, 
and integrators) with considerations that should be addressed in future guidance and policy; and 
recommendations for further research and development of technologies, tools, and processes useful 
for assuring the safety of ML-based systems safety-critical applications. Considerations are posed as 
directives or questions depending on the context. The recommendations are premised on: 

• The context of the set of recommendations is related to artifacts and processes above the 
component level. 

• The sequence of recommendations is based on the proposed life cycle as presented in 
Section 4. 

• ML-based systems development will follow Means of Compliance which guide applicants and 
certification authorities. 

7.1.1 Recommendations Related to Machine Learning Life Cycle: 
1. Investigate the rationale for employing machine learning. 
2. Investigate how machine learning is intended to be used. As a design aid? Using fixed runtime 

parameters or employing in-service updates? (Note: adaptive learning is not recommended by 
this report.) 

3. Investigate any specific requirements for ML, for data pre-processing and for output monitoring. 
4. Investigate the paradigms being considered (e.g., neural network, support vector machine, 

decision tree, random forest, etc...) and what is the rationale for their use. 
5. Once a topology (architecture) is selected, investigate the development activities involved, such 

as selection of hyperparameters, functions, architecture minimization (elimination of 
unnecessary elements that might lead to dead code), response time, resources consumption, 
etc. What is the rationale for the chosen topology and how does it satisfy the corresponding set 
of requirements? 

6. In addition to traditional system verification evidence, request verification evidence related to: 
a. Robustness criteria, 
b. Sufficiency of the range of input data to verify that the ML-system performs its intended 

function when subject to both “normal” and robustness requirements. 
c. Whether monitors are working correctly against normal and robustness requirements. 

7. Understand the transition criteria between each phase of the machine learning development life 
cycle. 

7.1.2 Recommendations Related to Datasets: 
8. Is the dataset consistent with requirements in terms of data types and expected ranges? 
9. Have criteria and processes for dataset curation been identified? 



 

 © 2020 Aerospace Vehicle Systems Institute 53 

a. Criteria for dataset characteristics such as quantity of data, distribution in terms of 
expected usage domain, independence of input types, data segregation (training, test 
and verification), and elimination of outliers? 

b. Criteria for data quality processes such as data curation/cleansing, dataset segregation, 
quality criteria? 

7.1.3 Recommendations Related to Robustness 
10. Robustness analysis requires intimate knowledge and understanding of the application domain 

requirements. Tradeoffs between robustness and the desired level of sensitivity to input data 
need to be understood, expressed in a quantifiable manner and considered. 

11. Use of open–source/third party ML software should be taken with care to reduce vulnerability 
to white source attacks (even if such software is used only in design stage and never gets 
deployed on aircraft). 

12. Robust classification can be analyzed and verified only with respect to a specific training set. 
Robust regression can be achieved uniformly, for an entire input domain. The 
training/verification set needs to be properly selected for robustness. 

13. Robustness can be improved by selecting a simplified neural network architecture (e.g. a ReLU 
network). 

14. V&V activities performed on neural networks need additional considerations. Classical V&V 
methods (as defined by DO-178B/C) are not sufficient for ML techniques, but still apply to the 
software implementation. 

7.1.4 Recommendations Related to Safety Assurance  
15. When using architectural mitigation strategies, such as a mix of machine learning 

implementations with traditionally implemented safety monitors, the analysis of the safe 
reversionary state or backup mode needs meticulous attention. Any reduced or simplified 
functionality needs to be shown sufficient for all anticipated operational scenarios. Furthermore, 
if the backup system and monitoring system form the basis of the system safety justification, 
issues of fault coverage, latent fault scrubbing, and the hardware level of redundancy required 
within the backup system need careful treatment and consideration. 

16. The Overarching Properties require the justification and argumentation of the basic properties:  
a. Intent – The defined intended behavior is correct and complete with respect to the desired 

behavior  
b. Correctness – The implementation is correct with respect to its defined intended behavior 

under foreseeable operating conditions. 
c. Innocuity – Any part of the implementation that is not required by the defined intended 

behavior has no unacceptable safety impact. 
7.1.5 Recommendations Related to Runtime Assurance: 

17. If the system-level monitor detects a potential safety issue for the system, the system-level 
monitor is able to inhibit the ML-based system and to continue in a safe mode (with or without 
aircraft limitations). 

18. According to the criticality of the function using ML, suitable segregation and independence of 
the monitor and backup functions should be implemented.  
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19. The architecture should prevent erroneous behavior of ML functions from propagating to or 
affecting the system level monitor and backup channels. The architecture should ensure the 
selection “switch” is controlled by the trusted RTA components. 

20. In order to ensure that an RTA architecture provides sufficient protections, it needs to be 
engineered with the same safety rigor as conventional safety-critical avionics. For example, all 
the traditional requisite safety analyses and ensuing design considerations are needed to 
ensure that the RTA architecture functions as intended in all foreseen environments 

21. Such levels of fault tolerance will likely require an RTA architecture incorporate a combination 
of redundancy and independence from the system under observation. 

22. For a complex, highly-coupled RTA architecture, such a classical approach may not work. In 
such a system, it must be shown that all failures of the complex function do not cause an unsafe 
situation, or are detected by the monitor and switched out. 

23. Whatever is being monitored, a “trace” of some kind will be needed. The choice of what trace 
to monitor needs to be well understood. The choice needs to be made based on the properties 
that need to be satisfied.  

7.1.6 Recommendations Related to AI Interpretability: 
24. Follow best practices when developing machine learning models by continually monitoring and 

storing metrics related to previous and current performance (e.g. recall, accuracy, etc. on 
training, validation, and test datasets). While such metrics do not provide direct insight into a 
black box implementation, in conjunction with a number of interpretable AI techniques 
mentioned in this document, metrics can help pin-point areas of improvement, additional training 
needed, and/or a lack of sufficient data in the operational domain. 

25. Employ relevant interpretability techniques mentioned herein (see Appendix A and Section 3.3 
on AI Interpretability) such as, but not limited to, measuring neuronal activation, saliency maps, 
behavioral clustering, etc. While such techniques might not directly provide sufficient evidence 
for certification, these methodologies enable more transparent development/training and 
provide insight into the functionality (strengths, weaknesses, and gaps) of a trained ML-model’s 
optimized values over time. AI interpretability techniques will greatly assist with design, 
development and debugging of AI models over the software life cycle. 

26. Consider attempting to reverse engineer the trained black box into any number of white box AI 
systems. While performance of the newly reverse engineered white box system might not match 
that of the original ML model, developers can potentially intuit meaningful insights regarding the 
underlying system and design domain.  

7.2 Recommendations for Community Standards 
As stated above, one of the motivations for this project was the lack of available standards and guidance 
useful for developing ML-based systems in safety-critical applications. The AFE 87 PMC recommends 
that appropriate standards development organizations consider developing community standards that 
define objectives for the following machine learning processes: 

• Training dataset curation, 

• Machine learning training, 

• Using ML safety assurance case demonstration, and 

• Using simulation and modeling for assuring ML-based systems. 
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There are a number of relevant committees that have formed to address AI/ML in safety-critical 
applications. These include the SAE International G-34 Committee on Artificial Intelligence in Aviation 
and the EUROCAE Working Group 11 on Artificial Intelligence (now working jointly with G-34). 
Additionally, RTCA, Inc. has issued a call for interest in forming a new special committee on Artificial 
Intelligence. AVSI AFE 87 PMC members have been active in promoting establishment of these 
committees and intend to contribute to their efforts to promote the recommendations herein. 

7.3 Recommendations for Future AVSI Research 
The AFE 87 Program Management Committee recommends follow-on work focusing on working two 
example machine learning use cases:  1) a regression use case, and 2) a classification use case. These 
two use cases will encompass many of the challenges and issues identified in this report. The objective 
of the follow-on work is to validate the processes and objectives recommended by this report. 
For each use case, the follow-on project should address the following:  

1. Work an example ML application – The intent of this activity is to exercise the concepts herein 
on a representative example for each of the use cases. These examples should be simple 
enough to allow progress within the context of an AVSI project, but detailed enough to provide 
insight on the utility and completeness of the recommendations in this report. 

2. Training dataset use, management, quality factors, and processes – This activity is 
intended to look specifically at the requirements on dataset used to train ML-based system used 
in aerospace. The PMC recommends that the project engage university researchers to examine 
aero-focused dataset needs. The scope should focus on the training part of an ML development 
life cycle. Outcomes could include definition of the characteristics of a “golden” dataset and 
recommendations for managing the IP aspects of datasets. 

3. ML specification – This activity should develop specific guidelines on how to specify the 
“unspecifiable” (e.g. recognizing a pedestrian). This should include not only the specification of 
the functional behavior, but also of (formally) verifiable safety properties. 

4. ML Validation and Verification – This AFE task should examine the use of both formal methods 
and testing to validate the correctness of an ML-based system and verify that it meets all safety 
and performance requirements. 

5. Application of Overarching Properties to ML – This potential activity would investigate ML 
assurance from a systems level perspective by employing concepts being developed under the 
FAA sponsored Overarching Properties effort. This could include developing and demonstrating 
techniques for applying an assurance use case approach to argue achievement of the intent, 
correctness, and innocuity properties.  

6. Simulation and Modeling for ML – the scope of this task would incorporate development of 
recommended requirements for the application of simulation and modeling to accelerate the 
learning of ML-based systems. Additionally, the AFE should develop similar requirements for the 
use of simulation and modeling in the validation, and possibly verification, of trained ML-based 
systems. 

7.4 Conclusion 
These recommendations offered by the members of the AVSI AFE 87 project are intended to help 
accelerate the development and availability of guidance and technologies useful for integrating 
ML-based systems in safety-critical aerospace applications. The need is urgent as AI/ML technologies 
are rapidly being deployed in other applications, driving down the cost of implementations and 
increasing the confidence in these technologies. Traditional aerospace industry stakeholders are eager 
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to reap the potential benefits of ML, while new applications such as unmanned systems and urban 
mobility are driving the desire to transition these technologies from other domains into aerospace. The 
AFE 87 PMC encourages cooperation among all stakeholders concerned with applying AI/ML in safety-
critical applications to promote further research and activities that address the current gap in our ability 
to assure the safety of these technologies. 
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8 Glossary 
Correctness The implementation is correct with respect to its defined intended behavior, 

under foreseeable operating conditions. 
Datasets A set of input vectors, related to requirements in the sense that requirements 

express their format, margins and ranges. These sets are used to train and 
validate ML topologies.  

Functional 
Correctness  

For all inputs, the ML-based system produces the output expected in the 
context of the intended behavior. 

Innocuity Any part of the implementation that is not required by the defined intended 
behavior has no unacceptable safety impact. 

Instrumentation  specific software/hardware that enable the monitor to observe the system.  
Intent  The defined intended behavior is correct and complete with respect to the 

desired behavior  
Labeling A factor influencing data quality for ML solutions employing supervised 

learning. Algorithms learn from a dataset of examples labeled with an output 
variable representing the right answer. 

Liveness  A specification intended to assure that the system makes progress. This is 
important in concurrency where processes may have to take turns in 
executing critical sections of code. 

Monitor  Runs during execution and determines if a given trace violates a given 
specification. 

Observability Ability of system state to be observed during execution. 
Optimization Calculating and/or iteratively converging towards a better collection of 

elements (from available alternatives) providing improved representation of a 
target task. 

Paradigm  Refers to the type of ML model (e.g., neural networks, decision trees, support 
vector machines, etc.) used to implement an ML-based system. 

Reinforcement 
Learning 

A machine learning paradigm in which the trained model’s output (action) is 
iteratively optimized via a reward heuristic. Positive rewards encourage 
similar behaviors over time, while negative rewards discourage them. 

Representativeness  A factor influencing data quality for ML solutions concerning the level to which 
training data contains all foreseen scenarios in which the system will be used. 

Runtime Verification 
Framework  

Given a logical specification and possibly additional details about the system 
under observation, an RV framework generates executable monitors 
including the instrumentation. 

Safety Property A specification that says “something bad will never happen.” This is usually 
defined in terms of unsafe regions of the state space. 

Specification In the context of runtime verification, a specification is the logical definition of 
a correctness property. 

Steering Problem What to do when a specification is violated. 
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Sufficiency  A factor influencing data quality for ML solutions concerning the quanitity of 
data used for training. The dataset should be sufficient in quantity to train the 
system to meet its requirements, which depends on the problem domain.  

Supervised Learning In supervised learning, the computer algorithms are “trained” by a “training 
dataset” of inputs tagged with desired outputs. Supervised learning can be 
applied, for example, as uni- or multivariate regression, to find the best 
algorithmic fit to a given dataset, thereby enabling prediction of the output 
from a new data point. 

Topology Once a paradigm has been selected (such as neural network), the topology 
identifies design details such as the shape of the network, how deep it is, how 
many inputs it uses and how many outputs there are. Training data is then 
used to set weights to be used so that the outputs of the topology satisfy the 
requirements for the expected range of values in the 𝑛-dimensional set of 
inputs. 

Trace  an execution trace of the observed system used in runtime verification. 
Unsupervised 
Learning 

In unsupervised learning, the input dataset is not a priori structured and the 
computer algorithm is used to find structure(s) in the data. Unsupervised 
learning can be applied, for example, as a form of data mining in unstructured 
datasets to reveal otherwise unknown structures and relationships in the 
dataset. 

Validation An engineering activity with the goal to assure that a product satisfies its 
intended customer use. In the context of datasets, a validation dataset is used 
to select the best subset of models before explicitly testing. 

Verification An engineering activity with the goal to assure that an implementation 
satisfies all requirements or specifications. In the context of ML datasets, a 
verification dataset is used to verify the behavior of the executable code once 
it has been integrated into the target platform/system. 
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Appendix A: Observability 

A.1 Dimensions of Interpretability 
The degree to which a black box system can be interpretable is in part determined by a number of 
related factors or properties of the underlying system. Several associated factors include: complexity, 
time limitations, global versus local interpretability, user expertise, and usability. This section provides 
some insight and definitions to such terms commonly found within the literature. 

• Complexity: Hara and Hayashi identify complexity by the number of regions or parts of the 
model, for which boundaries are defined.A1 Ribeiro, Singh, and Guestrin define complexity for 
linear models as the number of non-zero weights and as the depth of the tree for decision trees.A2 
Deng suggests that the complexity of a rule (and thus of an explanation) is measured by the 
length of the rule condition, defined as the number of attribute-value pairs in the condition.A3  

• Time Limitation: An important aspect is the time that the user has available or is allowed to 
spend on understanding an explanation. Intuitively, a longer time limitation potentially enables 
the user to dedicate more mental resources to comprehending a system response.A4 

• Global and Local Interpretability: A globally interpretable model is one that may be completely 
interpretable, i.e., we are able to understand the whole logic of a model and follow the entire 
chain of reasoning leading to all the different possible outcomes. On the other hand, local 
interpretability only affords reasons for a specific decision versus the entire system.A5 

• Nature of User Expertise: Users of a model may have different background knowledge and 
relevant domain experience. For instance, the mechanisms for interpretability are likely and 
necessarily different for policy-makers and technology consumers compared to compliance and 
safety engineers or data scientists.A4 

• Usability: Usable models provide information that assist users in accomplishing a task with 
awareness. A usable technology typically has an explicit or more comprehendible intended use 
case. Through understanding intended use, people can gain insight into model behaviors. A4  

A.2 Interpretability Definitions and Related Terms 
It’s important to discuss the meaning of interpretability used within this document and in general within 
the broader community. There are a number of related terminologies and factors regarding techniques 
which aid in exposing and interpreting black box systems. However, a consensus on terminologies is 

 
A1  Hara, S. and Hayashi, K., “Making Tree Ensembles Interpretable,” June 17, 2016. 

https://arxiv.org/abs/1606.05390, retrieved June 23, 2019. 
A2  Ribeiro, M., Singh, S., and Guestrin, C., “Why Should I Trust You?: Explaining the Predictions of Any 

Classifier,” Proceedings of the 22nd ACMSIGKDD International Conference on Knowledge Discovery and 
Data Mining, pages 1135–1144, ACM, 2016, https://arxiv.org/pdf/1602.04938.pdf, retrieved Apr. 18, 2019. 

A3  Deng, H., “Interpreting Tree Ensembles with in Trees,” 2016 ICML Workshop on Human Interpretability in 
Machine Learning (WHI 2016), New York, NY, USA, https://arxiv.org/pdf/1606.05390.pdf, retrieved June 
23, 2019. 

A4  Guidotti, R., et al., "A Survey of Methods for Explaining Black Box Models," ACM computing surveys 
(CSUR) 51.5 (2018): 93, https://arxiv.org/abs/1802.01933, retrieved April 6, 2019. 

A5  Lipton, Z., “The Mythos of Model Interpretability,” 2016 ICML Workshop on Human Interpretability in 
Machine Learning (WHI 2016), New York, NY, USA, https://arxiv.org/pdf/1606.03490v3.pdf, retrieved 
April 6, 2019. 
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not concrete within the literature. Some suggest model interpretability as a remedy to understanding a 
black box system, but few articulate precisely what interpretability means or why it is important.A5  
While most of the literature comes from machine learning and data mining communities, each 
community addresses the problem from a different perspective and associates different meanings. 
These various perspectives, in addition to the already intangible nature of interpretability, observability, 
trust, visibility, etc. lead to difficulties in forming concrete terminology. 
This section attempts to provide insight into commonly used terms and definitions. Within the literature 
there appears a number of terms related to the same underlying concept of AI interpretability. In data 
mining and machine learning, interpretability is defined as the ability to explain or to provide the 
meaning in understandable terms to a human. Explainable AI (XAI) is probably the most commonly 
used term these days, having been coined after a DARPA project of the same name.A6 Additionally, 
interpretability is also at times synonymous with terms such comprehensibility.A4 
Further, there are a number of interrelated terms associated with AI interpretability. Some more 
commonly associated terms are observability, trust, fairness and privacy. Transparency, when not used 
as a direct synonym, can also be utilized as a related term to interpretable AI:  

• Observability is the ability of the tester to observe the state of the system to determine whether 
a test passed or failed.A7  

• Transparency is defined as enabling an “operator’s comprehension about an intelligent agent’s 
intent, performance, future plans, and reasoning process.”A8 

Additionally, it is important to recognize that the exact definitions or implications of interpretability 
change through the perspective and operational level at which one is trying to diagnose interpretable 
designs. Interpretable AI discussed at the analytical level focusses on engendering insight and 
transparency into the underlying logic of the model and algorithm. There are a number of different 
perspectives and levels at which concepts of interpretability can be applied. This is discussed in a 
subsequent section. 

A.3 Logical Layers of Interpretability 
In discussing interpretable systems, it is likewise important to understand the distinction between 
different types of comprehensible AI approaches/techniques. AI interpretability is not a one size fits all 
solution space, but can be further characterized by the approach to which developers and researchers 
attempt to expose the black box. Further there are multiple layers to comprehensible AI based on the 
perspective in which the systems are utilized. By way of example, a comprehensible AI system 
according to an AI researcher will vary greatly compared to an unfamiliar end user. This section briefly 
discusses the decomposition of comprehensible AI based on perspective. 

 
A6  See https://www.darpa.mil/program/explainable-artificial-intelligence  
A7  Koopman, P., and Wagner, M., "Challenges in Autonomous Vehicle Testing and Validation," SAE Inter-

national Journal of Transportation Safety, 4.1 (2016): 15-24, 
https://users.ece.cmu.edu/~koopman/pubs/koopman16_sae_autonomous_validation.pdf, retrieved 
June 23, 2019. 

A8  Lyons, J., et al., “Certifiable Trust in Autonomous Systems: Making the Intractable Tangible”, Artificial 
Intelligence Magazine, 38, (3), pp. 37-49, https://www.aaai.org/ojs/index.php/aimagazine/issue/view/219, 
retrieved May 21, 2019. 
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A.3.1 Technological Decomposition of Interpretability 
There are numerous technical approaches to generating transparent models and providing insight into 
a black box system. Thus, it is helpful to compose the various technical approaches into a common 
methodology or set of distinct problem categories. This section highlights the general approaches 
researchers take toward AI Interpretability from an analytical perspective.  
In general, the common technical approaches toward development of a transparent system can be 
categorized into four unique types: the model explanation problem, black box outcome explanation 
problem, black box inspection problem and transparent box design problem.A4 Figure A-1 provides a 
visual representation of the four analytical problem categories. In each of the cases there are shared 
common modules. The learner module can be understood as a neural network or some other machine 
learned technique prior to and during optimization (via training on the desired dataset). The predictor 
is a trained system utilized for generating outputs provided some input.  

 
Figure A-1: Classifying the different approaches to exposing the black box.A4 

Each category attempts to address the problem of AI Interpretability through different mechanisms 
varying by both technique and the specific aspects of the model exposed.  

• The Black Box Model Explanation provides a globally interpretable AI system by mimicking the 
behaviors of the black box system via reverse engineering. An example of this use case is 
training a neural network on data in order to then train a more interpretable system to reproduce 
the neural net output, such as a regression model with hand crafted features or a Bayesian 
model. 

• The Outcome Explanation provides a locally interpretable AI system by generating a human 
understandable explanation for the black box output, in addition to the output itself. Such a 
system might provide textual, visual or verbal explanation for the prediction or output behavior. 

• The Black Box Inspection Problem explains the predictions by analyzing patterns in behaviors. 
This is typically accomplished through graphical and statistical means. An example of techniques 
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used to explain the black box in this case are sensitivity analysis, partial dependence plots and 
neuronal activation in the case of Deep Learning. 

• The Transparent Box Design is an inherently global and locally interpretable model. Such a 
system might use dynamic rules-based logic, or decision trees.  

The technical approaches can be further decomposed through the technique used to explain the black 
box system (explanator), the type of black box system, the data used by the underlying system (textual, 
tabular, imagery), and the generality of the explanator to name a few. Table A-1 provides a summary 
of the various features used to identify different technical approaches for categorizing black box 
interpretability.  

Table A-1: Features utilized to decompose the technical approaches.A4 

Feature Description 

Problem Model Explanation, Outcome Explanation, Black Box Inspection, Transparent 
Design 

Explanator 
DT – Decision Tree, DR – Decision Rules, Fl – Feature Importance, 
SM – Saliency Masks, SA – Sensitivity Analysis, PDP – Partial Dependence Plot, 
NA – Neuronal Activation, PS – Prototype Selection 

Black Box NN – Neural Network, TE – Tree Ensemble, SVM – Support Vector Machines, 
DNN – Deep Neural Network, AGN – AGNostic Black Box 

Data Type TAB – TABular, IMG – IMaGe, TXT – TeXT, ANY – ANY type of Data 
 
As a final note for this section, it will be important for the aviation industry to further identify how these 
general problem categories address models of interest to them. 

A.3.2 General Decomposition of Interpretability 
From an even broader perspective, AI Interpretability can be further categorized according to the 
system level at which interpretability is applied. The previous section namely discussed, the analytical 
transparency factor. However, there are several other levels at which interpretability is relevant: the 
intentional, environmental, task, analytic, and teamwork models.A8 
At a high level, the different models (Intentional, Environment, Task, Analytic, and Teamwork) each aim 
to provide specific transparency objectives. Table A-2 describes each of these models at a high level. 
Note, at each level different perspectives of the Designer, Tester, and User need to be accommodated. 
This will likely require specific techniques to address the unique challenges, concerns and levels of 
experience/familiarity with the underlying system each perspective provides. 
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Table A-2: General transparency levels to consider within an autonomous system.A8 

Transparency 
Factors/Levels Description 

Intentional Model High level purpose, method/style of interactions, goal structure overview, 
and social/moral intentions. 

Environment Model Communicates systems awareness of environmental conditions, constra 
ints and task related limitations. 

Task Model Regards system goals and real time progress toward goals. 

Analytics Model Regards how the system works, calculations and algorithms used, and 
explanations of why a technical error might occur. 

Teamwork Model Concerns the dynamics between human and autonomous teammates, 
as well as autonomous system to autonomous system cooperation. 

 

A.4 Interpretability Use Cases 
Explainable AI has multiple use cases and potential applications. One such broad use case could be 
utilization as part of a machine learning assurance case. Explainable techniques might provide needed 
justification and/or evidence for properties of performance. What follows are several examples of use 
cases for interpretable AI, which have practical applications for the use of machine learning within the 
aviation domain. These use cases, of which only a few are discussed here, include: justification via 
visual evidence, interpretability as a debugging tool, self-reporting interpretable systems, self-correcting 
interpretable systems, extending the training set for enhanced generalizability and robustness, and 
physics-guided ML. Visual evidence to justify performance, self-correcting interpretable systems, and 
physics guided deep learning are discussed below.  

A.4.1 Visual Evidence Justifying Performance  
A common technique used for explaining the predictions of Deep Neural Networks is through 
visualization of the features contributing to a particular prediction/model output. Regardless of the 
technique, the ultimate objective is to point toward the features that most strongly led to the acquired 
output. Visual evidence can be an intuitive mechanism, both for developers and potentially for certifying 
authorities, to better understand the internal logic of a black box system. While this technique alone 
does not provide sufficient information for an assurance claim, it can aid in developing trust of system 
functionality. As shown in Figure A-2, several different visualization techniques are used to expose a 
neural network by highlighting areas of an image that contributed to output text (left)A9 and self-driving 
car control outputs (right).A10 Nvidia is using such techniques during autonomous driving to provide 
additional validation and assist in passenger trust. The visualization technique helps confirm that the 
system is operating in conformance with expectations by attending to lane boundaries and other 
vehicles within the environment. 

 
A9  Xu, K., et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,”  

http://arxiv.org/pdf/1502.03044v3. Retrieved June 23, 2019. 
A10  M. Bojarski, et al., “Explaining how a deep neural network trained with end-to-end learning steers a car,” 

https://arxiv.org/abs/1704.07911 (2017). 
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Figure A-2: Exposing a neural network by highlighting areas of an image.A9 A10 

A.4.2 Self-Correcting Interpretable Systems 
Self-correcting Interpretable systems close the loop between reporting environmental features driving 
model output, and the causality of such features. A self-correcting ML system reports the justification 
for actions in an interpretable way and corrects those justifications based on their causality. Such a 
system goes beyond the simple cycle of optimizing machine learning accuracy. It does so by optimizing 
the human interpretable evidence the model uses to justify its predictions or behaviors. 
In the automotive example, the causal attention-based process could help verify that a steering 
command causing a lane change was determined through consideration of relevant environmental 
factors, such as the cars or pedestrians in nearby lanes. The underlying model and/or the interpretable 
heat map could be updated to reflect this newly verified information. Further, if the system was not 
attending to appropriate aspects of an image then this could trigger a more focused ML training regimen 
to remedy such shortcoming within particular scenarios. 
Kim and Canny illustrate a mechanism for defining attention-based heat maps via causal filtering, as 
shown in Figure A-3 below.A11 The top left image identifies the causal versus spurious (non-
contributing) heat map blobs. The text and bottom image highlight the process for identifying and 
refining the heat maps based on causal regions of attention. 

 
A11  Kim, Jinkyu; Canny, John, “Interpretable Learning for Self-Driving Cars by Visualizing Causal Attention,” 

http://arxiv.org/pdf/1703.10631v1 (2017). 
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Figure A-3: Mechanism for defining attention-based heat maps via causal filtering.A11 

A.4.3 Physics Guided Deep Learning 
The ability to enforce hard constraints on deep learning systems would make them more deterministic 
and interpretable, thereby aiding the certification process. Aerospace applications often require the 
modeling of physics processes and phenomena. There’s a spectrum across which these models are 
based on closed form equations, approximate models, all the way to pure data-based forecasting 
methods. Whether deep learning is useful is usually based on the accuracy and computational needs 
of less complex models (e.g. physics based). Methods for constraining DL systems offer varying 
degrees of interpretability.  
Traditional physical models are explicitly constrained, while data driven models are implicitly 
constrained by the observed phenomenon in the training data. Common types of constraints are 
conservation laws and rule-based constraints. In addition, we often impose engineering constraints and 
specifications that are not reflected in experimental data. Generally speaking, DL systems aren’t 
amenable to the incorporation of hard and rule-based constraints though investigations into this area 
are beginning to appear.A12, A13, A14  A primary reason for this is the incompatibility of the stochastic 

 
A12  Ravi, S., Dinh, T., Lokhande, V., Singh, V., “Constrained Deep Learning using Conditional Gradient and 

Applications in Computer Vision,” March 17, 2018, https://arxiv.org/abs/1803.06453, retrieved April 20, 
2019. 

A13  Márquez-Neila, P., Salzmann, M., Fua, P., “Imposing Hard Constraints on Deep Networks: Promises and 
Limitations,” June 7,2017. https://arxiv.org/pdf/1706.02025, retrieved April 20, 2019. 

A14  Karpatne, A., “How Can Physics Inform Deep Learning Methods in Scientific Problems,” University of 
Minnesota, 2017. https://dl4physicalsciences.github.io/files/nips_dlps_2017_slides_karpatne.pdf, retrieved 
April 20, 2019. 
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gradient descent (SGD) algorithm used to optimize the objective function for most DL systems with 
rule-based constraints. 
The most common approaches for incorporating physical constraints on DL models include: 

• Penalize the fitness function: Placing a penalty in the fitness function to discourage solutions 
with unwanted characteristics is common across all machine learning methods. This is useful 
for constraining specific known model characteristics that are measurable in the data. This is not 
a provable constraint, as may be required for certification. The penalty may discourage 
exploration of feasible solutions near the regions of penalty.  

• Model the errors: Modeling as much as possible with classical methods and using DL to model 
the difference between the model and observed data is often seen as a logical division of labor. 
This approach retains the explainability of the original model while acknowledging there may be 
observed nonlinear complexities that are beyond the model, but predictable. This is common in 
sensor data from an LRU that is part of a much larger coupled system. The example shown in 
Figure A-4 below illustrates an observed vibration signal of an engine is decomposed into the 
expected signal per physics-based modeling (red trace) and the remaining “noise” (pink trace). 
The noise is the information unexplainable by the model, but often contains additional useful 
information on complex and sometimes nonlinear behavior that is accessible via deep learning 
models.  

 
Figure A-4: A raw vibration signal decomposed into expected and “noise” components. 

• Model observed and simulated data simultaneously: Including observed behavior along with 
expected behavior is another way of imbuing a DL model with constraints. Imagine having both 
sensor data from an engine along with the values predicted by a physics-based model. Having 
learned the relative properties and ranges of the inputs, the model will learn implicit constraints 
of possible outputs. This is not a hard constraint and the method requires foreknowledge of 
nominal conditions for the system. Figure A-5 shows a deep auto-encoder network as an 
example. In this case the model uses observed and theoretical values of temperature, pressure 
and vibration to learn a model to predict them. After training, even if a temperature sensor failed, 
its predicted value is more likely to reflect a physically likely value.  

 
Figure A-5: A deep auto-encoder network being trained. 
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Inputs to the model include both sensor data and expected sensor readings from physics based models. 
The real and theoretical information are used to predict just the sensor data. The features learned will 
reflect both sources and be more robust if sensors deteriorate. This provides proxy outputs for bad 
sensors and an anomaly detection method. 


